664 research outputs found

    FirstLight: Pluggable Optical Interconnect Technologies for Polymeric Electro-Optical Printed Circuit Boards in Data Centers

    Get PDF
    The protocol data rate governing data storage devices will increase to over 12 Gb/s by 2013 thereby imposing unmanageable cost and performance burdens on future digital data storage systems. The resulting performance bottleneck can be substantially reduced by conveying high-speed data optically instead of electronically. A novel active pluggable 82.5 Gb/s aggregate bit rate optical connector technology, the design and fabrication of a compact electro-optical printed circuit board to meet exacting specifications, and a method for low cost, high precision, passive optical assembly are presented. A demonstration platform was constructed to assess the viability of embedded electro-optical midplane technology in such systems including the first ever demonstration of a pluggable active optical waveguide printed circuit board connector. High-speed optical data transfer at 10.3125 Gb/s was demonstrated through a complex polymer waveguide interconnect layer embedded into a 262 mm × 240 mm × 4.3 mm electro-optical midplane. Bit error rates of less than 10-12 and optical losses as low as 6 dB were demonstrated through nine multimode polymer wave guides with an aggregate data bandwidth of 92.8125 Gb/s

    Presupposition projection as proof construction

    Get PDF
    Even though Van der Sandt's presuppositions as anaphora approach is empirically successful, it fails to give a formal account of the interaction between world-knowledge and presuppositions. In this paper, an algorithm is sketched which is based on the idea of presuppositions as anaphora. It improves on this approach by employing a deductive system, Constructive Type Theory (CTT), to get a formal handle on the way world-knowledge influences presupposition projection. In CTT, proofs for expressions are explicitly represented as objects. These objects can be seen as a generalization of DRT's discourse markers. They are useful in dealing with presuppositional phenomena which require world-knowledge, such as Clark's bridging examples and Beaver's conditional presuppositions

    Gene co-expression networks shed light into diseases of brain iron accumulation

    Get PDF
    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention

    Colossal magnetocapacitance and scale-invariant dielectric response in phase-separated manganites

    Full text link
    Thin films of strongly-correlated electron materials (SCEM) are often grown epitaxially on planar substrates and typically have anisotropic properties that are usually not captured by edge-mounted four-terminal electrical measurements, which are primarily sensitive to in-plane conduction paths. Accordingly, the correlated interactions in the out-of-plane (perpendicular) direction cannot be measured but only inferred. We address this shortcoming and show here an experimental technique in which the SCEM under study, in our case a 600 Angstrom-thick (La1-yPry)0.67Ca0.33MnO3 (LPCMO) film, serves as the base electrode in a metal-insulator-metal (MIM) trilayer capacitor structure. This unconventional arrangement allows for simultaneous determination of colossal magnetoresistance (CMR) associated with dc transport parallel to the film substrate and colossal magnetocapacitance (CMC) associated with ac transport in the perpendicular direction. We distinguish two distinct strain-related direction-dependent insulator-metal (IM) transitions and use Cole-Cole plots to establish a heretofore unobserved collapse of the dielectric response onto a universal scale-invariant power-law dependence over a large range of frequency, temperature and magnetic field.Comment: 32 pages, 4 figures, Supplementary section included, Submitted to Nature Physic

    Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting

    Get PDF
    This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    TiO<sub>2</sub> nanoparticles can selectively bind CXCL8 impacting on neutrophil chemotaxis

    Get PDF
    The interaction between TiO2 nanoparticles (NPs) and inflammatory cytokines, including CXCL8, a clinically relevant pro-inflammatory chemokine was investigated. TiO2 is present in tissues adjacent to failing implanted Ti (titanium) devices. TiO2 NPs were shown to bind to CXCL8 in vitro, causing perturbation of quantification of CXCL8 by ELISA, in both simple and complex protein panels, in a dose-dependent manner. Binding between TiO2 NPs and CXCL8 was demonstrated by protein gel electrophoresis. TiO2 NPs were also shown to inactivate the chemoattractant property of CXCL8 in a dose-dependent manner, suggesting that the binding between TiO2 NPs and CXCL8 is likely to be clinically relevant. The results of this study disputed the applicability of detection of CXCL8 by ELISA in systems where TiO2 NPs were present. Clinically, the disruption of chemotaxis of neutrophils in response to CXCL8 in the presence of TiO2 might mean a hampered immune response to inflammation in tissues containing TiO2 NPs

    A Real Space Description of Magnetic Field Induced Melting in the Charge Ordered Manganites: I. The Clean Limit

    Full text link
    We study the melting of charge order in the half doped manganites using a model that incorporates double exchange, antiferromagnetic superexchange, and Jahn-Teller coupling between electrons and phonons. We primarily use a real space Monte Carlo technique to study the phase diagram in terms of applied field (h)(h) and temperature (T)(T), exploring the melting of charge order with increasing hh and its recovery on decreasing hh. We observe hysteresis in this response, and discover that the `field melted' high conductance state can be spatially inhomogeneous even without extrinsic disorder. The hysteretic response plays out in the background of field driven equilibrium phase separation. Our results, exploring hh, TT, and the electronic parameter space, are backed up by analysis of simpler limiting cases and a Landau framework for the field response. This paper focuses on our results in the `clean' systems, a companion paper studies the effect of cation disorder on the melting phenomena.Comment: 16 pages, pdflatex, 11 png fig

    Brain iron accumulation affects myelin-related molecular systems implicated in a rare neurogenetic disease family with neuropsychiatric features

    Get PDF
    The ‘neurodegeneration with brain iron accumulation’ (NBIA) disease family entails movement or cognitive impairment, often with psychiatric features. To understand how iron loading affects the brain, we studied mice with disruption of two iron regulatory genes, hemochromatosis (Hfe) and transferrin receptor 2 (Tfr2). Inductively coupled plasma atomic emission spectroscopy demonstrated increased iron in the Hfe-/- × Tfr2mut brain (P=0.002, n =5/group), primarily localized by Perls’ staining to myelinated structures. Western immunoblotting showed increases of the iron storage protein ferritin light polypeptide and microarray and real-time reverse transcription-PCR revealed decreased transcript levels (P&lt;0.04, n =5/group) for five other NBIA genes, phospholipase A2 group VI, fatty acid 2-hydroxylase, ceruloplasmin, chromosome 19 open reading frame 12 and ATPase type 13A2. Apart from the ferroxidase ceruloplasmin, all are involved in myelin homeostasis; 16 other myelin-related genes also showed reduced expression (P&lt;0.05), although gross myelin structure and integrity appear unaffected (P&gt;0.05). Overlap (P&lt;0.0001) of differentially expressed genes in Hfe-/- × Tfr2mut brain with human gene co-expression networks suggests iron loading influences expression of NBIA-related and myelin-related genes co-expressed in normal human basal ganglia. There was overlap (P&lt;0.0001) of genes differentially expressed in Hfe-/- × Tfr2mut brain and post-mortem NBIA basal ganglia. Hfe-/- × Tfr2mut mice were hyperactive (P&lt;0.0112) without apparent cognitive impairment by IntelliCage testing (P&gt;0.05). These results implicate myelin-related systems involved in NBIA neuropathogenesis in early responses to iron loading. This may contribute to behavioral symptoms in NBIA and hemochromatosis and is relevant to patients with abnormal iron status and psychiatric disorders involving myelin abnormalities or resistant to conventional treatments
    • 

    corecore