10,820 research outputs found

    Quasi-Local Formulation of Non-Abelian Finite-Element Gauge Theory

    Get PDF
    Recently it was shown how to formulate the finite-element equations of motion of a non-Abelian gauge theory, by gauging the free lattice difference equations, and simultaneously determining the form of the gauge transformations. In particular, the gauge-covariant field strength was explicitly constructed, locally, in terms of a path ordered product of exponentials (link operators). On the other hand, the Dirac and Yang-Mills equations were nonlocal, involving sums over the entire prior lattice. Earlier, Matsuyama had proposed a local Dirac equation constructed from just the above-mentioned link operators. Here, we show how his scheme, which is closely related to our earlier one, can be implemented for a non-Abelian gauge theory. Although both Dirac and Yang-Mills equations are now local, the field strength is not. The technique is illustrated with a direct calculation of the current anomalies in two and four space-time dimensions. Unfortunately, unlike the original finite-element proposal, this scheme is in general nonunitary.Comment: 19 pages, REVTeX, no figure

    Casimir Energies and Pressures for δ\delta-function Potentials

    Full text link
    The Casimir energies and pressures for a massless scalar field associated with δ\delta-function potentials in 1+1 and 3+1 dimensions are calculated. For parallel plane surfaces, the results are finite, coincide with the pressures associated with Dirichlet planes in the limit of strong coupling, and for weak coupling do not possess a power-series expansion in 1+1 dimension. The relation between Casimir energies and Casimir pressures is clarified,and the former are shown to involve surface terms. The Casimir energy for a δ\delta-function spherical shell in 3+1 dimensions has an expression that reduces to the familiar result for a Dirichlet shell in the strong-coupling limit. However, the Casimir energy for finite coupling possesses a logarithmic divergence first appearing in third order in the weak-coupling expansion, which seems unremovable. The corresponding energies and pressures for a derivative of a δ\delta-function potential for the same spherical geometry generalizes the TM contributions of electrodynamics. Cancellation of divergences can occur between the TE (δ\delta-function) and TM (derivative of δ\delta-function) Casimir energies. These results clarify recent discussions in the literature.Comment: 16 pages, 1 eps figure, uses REVTeX

    A novel scene-recording spectroradiometer

    No full text
    In this paper we describe an innovative approach to providing both a synthesised dual-beam capability and a permanent photographic record of the precise area sensed by a spectroradiometer. These advances have been achieved without modifying the spectroradiometer and may be used with a wide range of commercially-available spectroradiometers

    Continued Fraction as a Discrete Nonlinear Transform

    Full text link
    The connection between a Taylor series and a continued-fraction involves a nonlinear relation between the Taylor coefficients {an}\{ a_n \} and the continued-fraction coefficients {bn}\{ b_n \}. In many instances it turns out that this nonlinear relation transforms a complicated sequence {an}\{a_n \} into a very simple one {bn}\{ b_n \}. We illustrate this simplification in the context of graph combinatorics.Comment: 6 pages, OKHEP-93-0

    Rigorous bounds on the effective moduli of composites and inhomogeneous bodies with negative-stiffness phases

    Get PDF
    We review the theoretical bounds on the effective properties of linear elastic inhomogeneous solids (including composite materials) in the presence of constituents having non-positive-definite elastic moduli (so-called negative-stiffness phases). We show that for statically stable bodies the classical displacement-based variational principles for Dirichlet and Neumann boundary problems hold but that the dual variational principle for traction boundary problems does not apply. We illustrate our findings by the example of a coated spherical inclusion whose stability conditions are obtained from the variational principles. We further show that the classical Voigt upper bound on the linear elastic moduli in multi-phase inhomogeneous bodies and composites applies and that it imposes a stability condition: overall stability requires that the effective moduli do not surpass the Voigt upper bound. This particularly implies that, while the geometric constraints among constituents in a composite can stabilize negative-stiffness phases, the stabilization is insufficient to allow for extreme overall static elastic moduli (exceeding those of the constituents). Stronger bounds on the effective elastic moduli of isotropic composites can be obtained from the Hashin-Shtrikman variational inequalities, which are also shown to hold in the presence of negative stiffness

    The 'psychic pet' phenomenon: a reply to Rupert Sheldrake

    Get PDF
    Original article can be found at: http://www.spr.ac.uk/expcms/Rupert Sheldrake (1999a) has published a note in the previous issue of the Journal criticising our research into the ‘psychic pet’ phenomenon. Certain points arising from this criticism have also been included in his recent book, Dogs That Know When Their Owners Are Coming Home and Other Unexplained Powers of Animals (Sheldrake 1999b). This paper outlines why we believe his criticisms to be invalid.Peer reviewe
    • …
    corecore