260 research outputs found

    Spectral mixture modeling: Further analysis of rock and soil types at the Viking Lander sites

    Get PDF
    A new image processing technique was applied to Viking Lander multispectral images. Spectral endmembers were defined that included soil, rock and shade. Mixtures of these endmembers were found to account for nearly all the spectral variance in a Viking Lander image

    Compositional variability of the Martian surface

    Get PDF
    Spectral reflectance data from Viking Landers and Orbiters and from telescopic observations were analyzed with the objective of isolating compositional information about the Martian surface and assessing compositional variability. Two approaches were used to calibrate the data to reflectance to permit direct comparisons with laboratory reference spectra of well characterized materials. In Viking Lander multispectral images (six spectral bands) most of the spectral variation is caused by changes in lighting geometry within individual scenes, from scene to scene, and over time. Lighting variations are both wavelength independent and wavelength dependent. By calibrating lander image radiance values to reflectance using spectral mixture analysis, the possible range of compositions was assessed with reference to a collection of laboratory samples, also resampled to the lander spectral bands. All spectra from the lander images studied plot (in six-space) within a planar triangle having at the apexes the respective spectra of tan basaltic palagonite, gray basalt, and shale. Within this plane all lander spectra fit as mixtures of these three endmembers. Reference spectra that plot outside of the triangle are unable to account for the spectral variation observed in the images

    Reliability and performance evaluation of systems containing embedded rule-based expert systems

    Get PDF
    A method for evaluating the reliability of real-time systems containing embedded rule-based expert systems is proposed and investigated. It is a three stage technique that addresses the impact of knowledge-base uncertainties on the performance of expert systems. In the first stage, a Markov reliability model of the system is developed which identifies the key performance parameters of the expert system. In the second stage, the evaluation method is used to determine the values of the expert system's key performance parameters. The performance parameters can be evaluated directly by using a probabilistic model of uncertainties in the knowledge-base or by using sensitivity analyses. In the third and final state, the performance parameters of the expert system are combined with performance parameters for other system components and subsystems to evaluate the reliability and performance of the complete system. The evaluation method is demonstrated in the context of a simple expert system used to supervise the performances of an FDI algorithm associated with an aircraft longitudinal flight-control system

    Using endmembers in AVIRIS images to estimate changes in vegetative biomass

    Get PDF
    Field techniques for estimating vegetative biomass are labor intensive, and rarely are used to monitor changes in biomass over time. Remote-sensing offers an attractive alternative to field measurements; however, because there is no simple correspondence between encoded radiance in multispectral images and biomass, it is not possible to measure vegetative biomass directly from AVIRIS images. Ways to estimate vegetative biomass by identifying community types and then applying biomass scalars derived from field measurements are investigated. Field measurements of community-scale vegetative biomass can be made, at least for local areas, but it is not always possible to identify vegetation communities unambiguously using remote measurements and conventional image-processing techniques. Furthermore, even when communities are well characterized in a single image, it typically is difficult to assess the extent and nature of changes in a time series of images, owing to uncertainties introduced by variations in illumination geometry, atmospheric attenuation, and instrumental responses. Our objective is to develop an improved method based on spectral mixture analysis to characterize and identify vegetative communities, that can be applied to multi-temporal AVIRIS and other types of images. In previous studies, multi-temporal data sets (AVIRIS and TM) of Owens Valley, CA were analyzed and vegetation communities were defined in terms of fractions of reference (laboratory and field) endmember spectra. An advantage of converting an image to fractions of reference endmembers is that, although fractions in a given pixel may vary from image to image in a time series, the endmembers themselves typically are constant, thus providing a consistent frame of reference

    Mapping and monitoring changes in vegetation communities of Jasper Ridge, CA, using spectral fractions derived from AVIRIS images

    Get PDF
    An important application of remote sensing is to map and monitor changes over large areas of the land surface. This is particularly significant with the current interest in monitoring vegetation communities. Most of traditional methods for mapping different types of plant communities are based upon statistical classification techniques (i.e., parallel piped, nearest-neighbor, etc.) applied to uncalibrated multispectral data. Classes from these techniques are typically difficult to interpret (particularly to a field ecologist/botanist). Also, classes derived for one image can be very different from those derived from another image of the same area, making interpretation of observed temporal changes nearly impossible. More recently, neural networks have been applied to classification. Neural network classification, based upon spectral matching, is weak in dealing with spectral mixtures (a condition prevalent in images of natural surfaces). Another approach to mapping vegetation communities is based on spectral mixture analysis, which can provide a consistent framework for image interpretation. Roberts et al. (1990) mapped vegetation using the band residuals from a simple mixing model (the same spectral endmembers applied to all image pixels). Sabol et al. (1992b) and Roberts et al. (1992) used different methods to apply the most appropriate spectral endmembers to each image pixel, thereby allowing mapping of vegetation based upon the the different endmember spectra. In this paper, we describe a new approach to classification of vegetation communities based upon the spectra fractions derived from spectral mixture analysis. This approach was applied to three 1992 AVIRIS images of Jasper Ridge, California to observe seasonal changes in surface composition

    Temporal variation in spectral detection thresholds of substrate and vegetation in AVIRIS images

    Get PDF
    The ability to map changes over large surface areas over time is one of the advantages in using remote sensing as a monitoring tool. Temporal changes in the surface may be gradual, making them difficult to detect in the short-term, and because they commonly occur at the subpixel scale, they may be difficult to detect in the long-term as well. Also, subtle changes may be real or merely an artifact of image noise. It is, therefore, necessary to understand the factors that limit the detection of surface materials in evaluating temporal data. The spectral detectability of vegetation and soil in the 1990 July and October Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of Jasper Ridge, CA was evaluated and compared

    Hadronic τ\tau decay, the renormalization group, analiticity of the polarization operators and QCD parameters

    Full text link
    The ALEPH data on hadronic tau-decay is throughly analysed in the framework of QCD. The perturbative calculations are performed in 1-4-loop approximation. The analytical properties of the polarization operators are used in the whole complex q^2 plane. It is shown that the QCD prediction for R_{tau} agrees with the measured value R_{tau} not only for conventional Lambda^{conv}_3 = (618+-29) MeV but as well as for Lambda^{new}_3 = (1666+-7) MeV. The polarization operator calculated using the renormgroup has nonphysical cut [-Lambda^2_3, 0]. If Lambda_3 = Lambda^{conv}_3, the contribution of only physical cut is deficient in the explanation of the ALEPH experiment. If Lambda_3 = Lambda^{new}_3 the contribution of nonphysical cut is very small and only the physical cut explains the ALEPH experiment. The new sum rules which follow only from analytical properties of polarization operators are obtained. Basing on the sum rules obtained, it is shown that there is an essential disagreement between QCD perturbation theory and the tau-lepton hadronic decay experiment at conventional value Lambda_3. In the evolution upwards to larger energies the matching of r(q^2) (Eq.(12)) at the masses J/psi, Upsilon and 2m_t was performed. The obtained value alpha_s(-m^2_z) = 0.141+-0.004 (at Lambda_3 = Lambda^{new}_3) differs essentially from conventional value, but the calculation of the values R(s) = sigma(e+e- -> hadrons)/sigma(e+e- -> mu+mu-), R_l = Gamma(Z -> hadrons)/Gamma(Z -> leptons), alpha_s(-3 GeV^2), alpha_s(-2.5 GeV^2) does not contradict the experiments.Comment: 20 page

    Renormalization-Scale-Invariant PQCD Predictions for R_e+e- and the Bjorken Sum Rule at Next-to-Leading Order

    Get PDF
    We discuss application of the physical QCD effective charge αV\alpha_V, defined via the heavy-quark potential, in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie prescription for fixing the renormalization scales, the resulting series are automatically and naturally scale and scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such commensurate scale relations for the e+ee^+e^- annihilation ratio Re+eR_{e^+e^-} and the Bjorken sum rule. In both cases the improved predictions are in excellent agreement with experiment.Comment: 13 Latex pages with 5 figures; to be published in Physical Review

    AVIRIS spectral trajectories for forested areas of the Gifford Pinchot National Forest

    Get PDF
    A simple mixing model employing reference endmembers (green vegetation, non-photosynthetic vegetation, soil and shade), and using 180 AVIRIS bands, was used to establish an interpretive framework for a forested area in the Pacific Northwest. A regrowth trend, based on changes in the endmember proportions, was defined for conifers that extends from clearcuts to mature forest, and by implication to old growth. Deciduous species within replanted forest plots caused the fractions to be displaced from the main coniferous regrowth trend and to move toward the green vegetation fraction. The results indicate that the spectral information in AVIRIS can be inverted to estimate approximate stand age and relative proportion of deciduous species in the context of the area studied. Using AVIRIS we measured a 3 to 5 percent increase in woody material in old-growth forest, as distinct from other mature forest. This result is consistent with a predicted increase in NPV in old-growth forest, based on field observations. Previous application of the mixing analysis to a TM image of the same area separated old growth based solely on the shade fraction; however the approach required successful removal of shade introduced by topography. Our new results suggest that with the high spectral resolution and high signal-to-noise of AVIRIS images it may be possible to characterize and map old-growth forests in the Northwest using both the NPV fraction and shade

    A rigorous analysis of high order electromagnetic invisibility cloaks

    Full text link
    There is currently a great deal of interest in the invisibility cloaks recently proposed by Pendry et al. that are based in the transformation approach. They obtained their results using first order transformations. In recent papers Hendi et al. and Cai et al. considered invisibility cloaks with high order transformations. In this paper we study high order electromagnetic invisibility cloaks in transformation media obtained by high order transformations from general anisotropic media. We consider the case where there is a finite number of spherical cloaks located in different points in space. We prove that for any incident plane wave, at any frequency, the scattered wave is identically zero. We also consider the scattering of finite energy wave packets. We prove that the scattering matrix is the identity, i.e., that for any incoming wave packet the outgoing wave packet is the same as the incoming one. This proves that the invisibility cloaks can not be detected in any scattering experiment with electromagnetic waves in high order transformation media, and in particular in the first order transformation media of Pendry et al. We also prove that the high order invisibility cloaks, as well as the first order ones, cloak passive and active devices. The cloaked objects completely decouple from the exterior. Actually, the cloaking outside is independent of what is inside the cloaked objects. The electromagnetic waves inside the cloaked objects can not leave the concealed regions and viceversa, the electromagnetic waves outside the cloaked objects can not go inside the concealed regions. As we prove our results for media that are obtained by transformation from general anisotropic materials, we prove that it is possible to cloak objects inside general crystals.Comment: The final version is now published in Journal of Physics A: Mathematical and Theoretical, vol 41 (2008) 065207 (21 pp). Included in IOP-Selec
    corecore