2,843 research outputs found

    Silicate luminescence and remote compositional mapping

    Get PDF
    Silicate luminescence and remote compositional mappin

    Spectral representation of the effective dielectric constant of graded composites

    Full text link
    We generalize the Bergman-Milton spectral representation, originally derived for a two-component composite, to extract the spectral density function for the effective dielectric constant of a graded composite. This work has been motivated by a recent study of the optical absorption spectrum of a graded metallic film [Applied Physics Letters, 85, 94 (2004)] in which a broad surface-plasmon absorption band has been shown to be responsible for enhanced nonlinear optical response as well as an attractive figure of merit. It turns out that, unlike in the case of homogeneous constituent components, the characteristic function of a graded composite is a continuous function because of the continuous variation of the dielectric function within the constituent components. Analytic generalization to three dimensional graded composites is discussed, and numerical calculations of multilayered composites are given as a simple application.Comment: Physical Review E, submitted for publication

    Twenty-first semiannual report to Congress, 1 January - 30 June 1969

    Get PDF
    Manned space flights, satellite observations, space sciences, and air traffic control - NASA report to Congress for 1 Jan. to 30 June 196

    Electromagnetic semitransparent δ\delta-function plate: Casimir interaction energy between parallel infinitesimally thin plates

    Full text link
    We derive boundary conditions for electromagnetic fields on a δ\delta-function plate. The optical properties of such a plate are shown to necessarily be anisotropic in that they only depend on the transverse properties of the plate. We unambiguously obtain the boundary conditions for a perfectly conducting δ\delta-function plate in the limit of infinite dielectric response. We show that a material does not "optically vanish" in the thin-plate limit. The thin-plate limit of a plasma slab of thickness dd with plasma frequency ωp2=ζp/d\omega_p^2=\zeta_p/d reduces to a δ\delta-function plate for frequencies (ω=iζ\omega=i\zeta) satisfying ζd≪ζpd≪1\zeta d \ll \sqrt{\zeta_p d} \ll 1. We show that the Casimir interaction energy between two parallel perfectly conducting δ\delta-function plates is the same as that for parallel perfectly conducting slabs. Similarly, we show that the interaction energy between an atom and a perfect electrically conducting δ\delta-function plate is the usual Casimir-Polder energy, which is verified by considering the thin-plate limit of dielectric slabs. The "thick" and "thin" boundary conditions considered by Bordag are found to be identical in the sense that they lead to the same electromagnetic fields.Comment: 21 pages, 7 figures, references adde

    Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors

    Full text link
    We show that any pair of real symmetric tensors \BGve and \BGm can be realized as the effective electric permittivity and effective magnetic permeability of a metamaterial at a given fixed frequency. The construction starts with two extremely low loss metamaterials, with arbitrarily small microstructure, whose existence is ensured by the work of Bouchitt{\'e} and Bourel and Bouchitt\'e and Schweizer, one having at the given frequency a permittivity tensor with exactly one negative eigenvalue, and a positive permeability tensor, and the other having a positive permittivity tensor, and a permeability tensor having exactly one negative eigenvalue. To achieve the desired effective properties these materials are laminated together in a hierarchical multiple rank laminate structure, with widely separated length scales, and varying directions of lamination, but with the largest length scale still much shorter than the wavelengths and attenuation lengths in the macroscopic effective medium.Comment: 12 pages, no figure

    Electromagnetic field fluctuations near a dielectric-vacuum boundary and surface divergences in the ideal conductor limit

    Full text link
    We consider the electric and magnetic field fluctuations in the vacuum state in the region external to a half-space filled with a homogeneous non-dissipative dielectric. We discuss an appropriate limit to an ideal metal and concentrate our interest on the renormalized field fluctuations, or equivalently to renormalized electric and magnetic energy densities, in the proximity of the dielectric-vacuum interface. We show that surface divergences of field fluctuations arise at the interface in an appropriate ideal conductor limit, and that our limiting procedure allows to discuss in detail their structure. Field fluctuations close to the surface can be investigated through the retarded Casimir-Polder interaction with an appropriate polarizable body.Comment: 6 pages, 2 figure

    The quantum metrology triangle and the re-definition of the SI ampere and kilogram; Analysis of a reduced set of observational equations

    Full text link
    We have developed a set of seven observational equations that include all of the physics necessary to relate the most important of the fundamental constants to the definitions of the SI kilogram and ampere. We have used these to determine the influence of alternative definitions being considered for the SI kilogram and ampere on the uncertainty of three of the fundamental constants (h, e and mu). We have also reviewed the experimental evidence for the exactness of the quantum metrology triangle resulting from experiments combining the quantum Hall effect, the Josephson effects and single-electron tunnelling.Comment: 16 pages, 3 figures & 5 table

    Casimir effect for the scalar field under Robin boundary conditions: A functional integral approach

    Full text link
    In this work we show how to define the action of a scalar field in a such a way that Robin boundary condition is implemented dynamically, i.e., as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c1c_1 and c2c_2. Some special cases are discussed; in particular, we show that for some values of c1c_1 and c2c_2 the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the λϕ4\lambda\phi^4 theory submitted to Robin boundary condition on a plate.Comment: 16 pages, 2 figures. Version 2: contains a new section on the renormalization of the two-point Green function in the presence of a flat boundary. Accepted for publication in J. Phys.
    • …
    corecore