127 research outputs found

    Matter in Toy Dynamical Geometries

    Full text link
    One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect matter can affect dynamical geometries. Using a simple model, it is shown that matter can effectively mold a geometry into an isotropic configuration. Implications for "atomistic" models of quantum geometry are briefly discussed.Comment: 8 pages, 1 figure, paper presented at DICE 200

    Lower Temperature Annealing of Vapor Diffused Nb\u3csub\u3e3\u3c/sub\u3eSn for Accelerator Cavities

    Get PDF
    Nb3Sn is a next-generation superconducting material for the accelerator cavities with higher critical temperature and superheating field, both twice compared to Nb. It promises superior performance and higher operating temperature than Nb, resulting in significant cost reduction. So far, the Sn vapor diffusion method is the most preferred and successful technique to coat niobium cavities with Nb3Sn. Although several post-coating techniques (chemical, electrochemical, mechanical) have been explored to improve the surface quality of the coated surface, an effective process has yet to be found. Since there are only a few studies on the post-coating heat treatment at lower temperatures, we annealed Nb3Sn-coated samples at 800 C - 1000 C to study the effect of heat treatments on surface properties, primarily aimed at removing surface Sn residues. This paper discusses the systematic surface analysis of coated samples after annealing at temperatures between 850 C and 950 C

    Magnetic Flux Expulsion in Superconducting Radio-Frequency Niobium Cavities Made From Cold Worked Niobium

    Get PDF
    Trapped residual magnetic field during the cooldown of superconducting radio frequency (SRF) cavities is one of the primary source of RF residual losses leading to lower quality factor. Historically, SRF cavities have been fabricated from high purity fine grain niobium with grain size ~50 - 100 μm as well as large grain with grain size of the order of few centimeters. Non-uniform recrystallization of fine-grain Nb cavities after the post fabrication heat treatment leads to higher flux trapping during cooldown, hence the lower quality factor. We fabricated two 1.3 GHz single cell cavities from cold-worked niobium from different vendors and processed along with cavities made from SRF grade Nb. The flux expulsion and flux trapping sensitivity were measured after successive heat treatments in the range 800 – 1000°C. The flux expulsion from cold-worked fine-grain Nb cavities improves after 800°C/3 hours heat treatments and it becomes similar to that of standard fine-grain Nb cavities when the heat treatment temperature is higher than 900°C

    Bunch Length Measurements at the CEBAF Injector at 130 kV

    Get PDF
    In this work, we investigated the evolution in bunch length of beams through the CEBAF injector for low to high charge per bunch. Using the General Particle Tracer (GPT), we have simulated the beams through the beamline of the CEBAF injector and analyzed the beam to get the bunch lengths at the location of chopper. We performed these simulations with the existing injector using a 130 kV gun voltage. Finally, we describe measurements to validate these simulations. The measurements have been done using chopper scanning technique for two injector laser drive frequency modes: one with 500 MHz, and another with 250 MHz

    New Results at JLab Describing Operating Lifetime of GaAs Photo-Guns

    Get PDF
    Polarized electrons from GaAs photocathodes have been key to some of the highest-impact results of the Jefferson Lab science program over the past 30 years. During this time, various studies have given insight into improving the operational lifetime of these photocathodes in DC high-voltage photo-guns while using lasers with spatial Gaussian profiles of typically 0.5 mm to 1 mm FWHM, cathode voltages of 100 kV to 130 kV, and a wide range of beam currents up to multiple mA. In this contribution, we show recent experimental data from a 100 kV to 180 kV setup and describe our progress at predicting the lifetime based on the calculable dynamics of ionized gas molecules inside the gun. These new experimental studies at Jefferson Lab are specifically aimed at exploring the ion damage of higher-voltage guns being built for injectors

    On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    Full text link
    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 micrometer separation range. The measurements are obtained by performing electrostatic calibrations followed by a residual analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrixation-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.Comment: 22 pages, 15 figure

    Dynamical Casimir Effect with Semi-Transparent Mirrors, and Cosmology

    Full text link
    After reviewing some essential features of the Casimir effect and, specifically, of its regularization by zeta function and Hadamard methods, we consider the dynamical Casimir effect (or Fulling-Davis theory), where related regularization problems appear, with a view to an experimental verification of this theory. We finish with a discussion of the possible contribution of vacuum fluctuations to dark energy, in a Casimir like fashion, that might involve the dynamical version.Comment: 11 pages, Talk given in the Workshop ``Quantum Field Theory under the Influence of External Conditions (QFEXT07)'', Leipzig (Germany), September 17 - 21, 200

    Confined quantum fields under the influence of a uniform magnetic field

    Full text link
    We investigate the influence of a uniform magnetic field on the zero-point energy of charged fields of two types, namely, a massive charged scalar field under Dirichlet boundary conditions and a massive fermion field under MIT boundary conditions. For the first, exact results are obtained, in terms of exponentially convergent functions, and for the second, the limits for small and for large mass are analytically obtained too. Coincidence with previously known, partial result serves as a check of the procedure. For the general case in the second situation --a rather involved one-- a precise numerical analysis is performed.Comment: 17 pages, 5 figure
    • …
    corecore