2,389 research outputs found

    The Induced Charge Generated By The Potential Well In Graphene

    Full text link
    The induced charge density, ρind(r)\rho_{ind}(\bm r), generated in graphene by the potential well of the finite radius RR is considered. The result for ρind(r)\rho_{ind}(\bm r) is derived for large distances rRr\gg R. We also obtained the induced charges outside of the radius rRr\gg R and inside of this radius for subcritical and supercritical regimes. The consideration is based on the convenient representation of the induced charge density via the Green's function of electron in the field.Comment: 12 pages, 2 figures, version published in Phys.Rev.

    High-energy e+ee^+e^- photoproduction cross section close to the end of spectrum

    Full text link
    We consider the cross section of electron-positron pair production by a high-energy photon in a strong Coulomb field close to the end of electron or positron spectrum. We show that the cross section essentially differs from the result obtained in the Born approximation as well as form the result which takes into account the Coulomb corrections under assumption that both electron and positron are ultrarelativistic. The cross section of bremsstrahlung in a strong Coulomb field by a high-energy electron is also obtained in the region where the final electron is not ultrarelativistic.Comment: 20 pages, 4 figure

    Screening of Coulomb Impurities in Graphene

    Full text link
    We calculate exactly the vacuum polarization charge density in the field of a subcritical Coulomb impurity, Ze/rZ|e|/r, in graphene. Our analysis is based on the exact electron Green's function, obtained by using the operator method, and leads to results that are exact in the parameter ZαZ\alpha, where α\alpha is the "fine structure constant" of graphene. Taking into account also electron-electron interactions in the Hartree approximation, we solve the problem self-consistently in the subcritical regime, where the impurity has an effective charge ZeffZ_{eff}, determined by the localized induced charge. We find that an impurity with bare charge Z=1 remains subcritical, Zeffα<1/2Z_{eff} \alpha < 1/2, for any α\alpha, while impurities with Z=2,3Z=2,3 and higher can become supercritical at certain values of α\alpha.Comment: 4 pages, 2 figure

    Corrections to the energy levels of a spin-zero particle bound in a strong field

    Full text link
    Formulas for the corrections to the energy levels and wave functions of a spin-zero particle bound in a strong field are derived. General case of the sum of a Lorentz-scalar potential and zero component of a Lorentz-vector potential is considered. The forms of the corrections differ essentially from those for spin-1/2 particles. As an example of application of our results, we evaluated the electric polarizability of a ground state of a spin-zero particle bound in a strong Coulomb field.Comment: 7 pages, 1 figur

    Angular distributions in J/ψppˉπ0(η)J/\psi\to p\bar{p}\pi^{0}(\eta) decays

    Get PDF
    The differential decay rates of the processes J/ψppˉπ0J/\psi\to p\bar{p}\pi^{0} and J/ψppˉηJ/\psi\to p\bar{p}\eta close to the ppˉp\bar{p} threshold are calculated with the help of the NNˉN\bar{N} optical potential. The same calculations are made for the decays of ψ(2S)\psi(2S). We use the potential which has been suggested to fit the cross sections of NNˉN\bar{N} scattering together with NNˉN\bar{N} and six pion production in e+ee^{+}e^{-} annihilation close to the ppˉp\bar{p} threshold. The ppˉp\bar{p} invariant mass spectra is in agreement with the available experimental data. The anisotropy of the angular distributions, which appears due to the tensor forces in the NNˉN\bar{N} interaction, is predicted close to the ppˉp\bar{p} threshold. This anisotropy is large enough to be investigated experimentally. Such measurements would allow one to check the accuracy of the model of NNˉN\bar{N} interaction.Comment: 10 pages, 8 figure

    In Memory of Peter Cicchino

    Get PDF
    corecore