2,866 research outputs found

    Angular distribution of high-energy e+ee^+e^- photoproduction close to the end of spectrum

    Full text link
    We consider the differential cross section of electron-positron pair production by a high-energy photon in a strong Coulomb field close to the end of the electron or positron spectrum. When the momentum transfer largely exceeds the electron mass, the cross section is obtained analytically in a compact form. Coulomb corrections essentially modify the cross section even for moderate values of the nuclear charge number ZZ. In the same kinematical region, the angular distribution for bound-free pair production, bremsstrahlung, and photorecombination is also obtained.Comment: 12 pages, 4 figure

    High-energy e+ee^+e^- photoproduction cross section close to the end of spectrum

    Full text link
    We consider the cross section of electron-positron pair production by a high-energy photon in a strong Coulomb field close to the end of electron or positron spectrum. We show that the cross section essentially differs from the result obtained in the Born approximation as well as form the result which takes into account the Coulomb corrections under assumption that both electron and positron are ultrarelativistic. The cross section of bremsstrahlung in a strong Coulomb field by a high-energy electron is also obtained in the region where the final electron is not ultrarelativistic.Comment: 20 pages, 4 figure

    The Induced Charge Generated By The Potential Well In Graphene

    Full text link
    The induced charge density, ρind(r)\rho_{ind}(\bm r), generated in graphene by the potential well of the finite radius RR is considered. The result for ρind(r)\rho_{ind}(\bm r) is derived for large distances rRr\gg R. We also obtained the induced charges outside of the radius rRr\gg R and inside of this radius for subcritical and supercritical regimes. The consideration is based on the convenient representation of the induced charge density via the Green's function of electron in the field.Comment: 12 pages, 2 figures, version published in Phys.Rev.

    Ultrarelativistic quasiclassical wave functions in strong laser and atomic fields

    Full text link
    The problem of an ultrarelativistic charge in the presence of an atomic and a plane-wave field is investigated in the quasiclassical regime by including exactly the effects of both background fields. Starting from the quasiclassical Green's function obtained in [Phys. Lett. B \textbf{717}, 224 (2012)], the corresponding in- and out-wave functions are derived in the experimentally relevant case of the particle initially counterpropagating with respect to the plane wave. The knowledge of these electron wave functions opens the possibility of investigating a variety of problems in strong-field QED, where both the atomic field and the laser field are strong enough to be taken into account exactly from the beginning in the calculations.Comment: 24 pages, no figure

    Coulomb effects in high-energy e+ee^+e^- electroproduction by a heavy charged particles in an atomic field

    Full text link
    The cross section of high-energy e+ee^+e^- pair production by a heavy charged particle in the atomic field is investigated in detail. We take into account the interaction with the atomic field of e+ee^+e^- pair and a heavy particle as well. The calculation is performed exactly in the parameters of the atomic field. It is shown that, in contrast to the commonly accepted point of view, the cross section differential with respect to the final momentum of a heavy particle is strongly affected by the interaction of a heavy particle with the atomic field. However, the cross section integrated over the final momentum of a heavy particle is independent of this interaction.Comment: 10 pages, 4 figure

    Screening of Coulomb Impurities in Graphene

    Full text link
    We calculate exactly the vacuum polarization charge density in the field of a subcritical Coulomb impurity, Ze/rZ|e|/r, in graphene. Our analysis is based on the exact electron Green's function, obtained by using the operator method, and leads to results that are exact in the parameter ZαZ\alpha, where α\alpha is the "fine structure constant" of graphene. Taking into account also electron-electron interactions in the Hartree approximation, we solve the problem self-consistently in the subcritical regime, where the impurity has an effective charge ZeffZ_{eff}, determined by the localized induced charge. We find that an impurity with bare charge Z=1 remains subcritical, Zeffα<1/2Z_{eff} \alpha < 1/2, for any α\alpha, while impurities with Z=2,3Z=2,3 and higher can become supercritical at certain values of α\alpha.Comment: 4 pages, 2 figure
    corecore