59 research outputs found

    Quasi-Exact Solvability and the direct approach to invariant subspaces

    Full text link
    We propose a more direct approach to constructing differential operators that preserve polynomial subspaces than the one based on considering elements of the enveloping algebra of sl(2). This approach is used here to construct new exactly solvable and quasi-exactly solvable quantum Hamiltonians on the line which are not Lie-algebraic. It is also applied to generate potentials with multiple algebraic sectors. We discuss two illustrative examples of these two applications: an interesting generalization of the Lam\'e potential which posses four algebraic sectors, and a quasi-exactly solvable deformation of the Morse potential which is not Lie-algebraic.Comment: 17 pages, 3 figure

    Vanishing Scalar Invariant Spacetimes in Higher Dimensions

    Full text link
    We study manifolds with Lorentzian signature and prove that all scalar curvature invariants of all orders vanish in a higher-dimensional Lorentzian spacetime if and only if there exists an aligned non-expanding, non-twisting, geodesic null direction along which the Riemann tensor has negative boost order.Comment: final versio

    All spacetimes with vanishing curvature invariants

    Get PDF
    All Lorentzian spacetimes with vanishing invariants constructed from the Riemann tensor and its covariant derivatives are determined. A subclass of the Kundt spacetimes results and we display the corresponding metrics in local coordinates. Some potential applications of these spacetimes are discussed.Comment: 24 page

    Invariant classification and the generalised invariant formalism: conformally flat pure radiation metrics, with zero cosmological constant

    Full text link
    Metrics obtained by integrating within the generalised invariant formalism are structured around their intrinsic coordinates, and this considerably simplifies their invariant classification and symmetry analysis. We illustrate this by presenting a simple and transparent complete invariant classification of the conformally flat pure radiation metrics (except plane waves) in such intrinsic coordinates; in particular we confirm that the three apparently non-redundant functions of one variable are genuinely non-redundant, and easily identify the subclasses which admit a Killing and/or a homothetic Killing vector. Most of our results agree with the earlier classification carried out by Skea in the different Koutras-McIntosh coordinates, which required much more involved calculations; but there are some subtle differences. Therefore, we also rework the classification in the Koutras-McIntosh coordinates, and by paying attention to some of the subtleties involving arbitrary functions, we are able to obtain complete agreement with the results obtained in intrinsic coordinates. In particular, we have corrected and completed statements and results by Edgar and Vickers, and by Skea, about the orders of Cartan invariants at which particular information becomes available.Comment: Extended version of GRG publication, with some typos etc correcte

    Generalizations of pp-wave spacetimes in higher dimensions

    Full text link
    We shall investigate DD-dimensional Lorentzian spacetimes in which all of the scalar invariants constructed from the Riemann tensor and its covariant derivatives are zero. These spacetimes are higher-dimensional generalizations of DD-dimensional pp-wave spacetimes, which have been of interest recently in the context of string theory in curved backgrounds in higher dimensions.Comment: 5 pages, RevTex, to appear in Physical Review

    Classification of the Weyl Tensor in Higher Dimensions and Applications

    Full text link
    We review the theory of alignment in Lorentzian geometry and apply it to the algebraic classification of the Weyl tensor in higher dimensions. This classification reduces to the the well-known Petrov classification of the Weyl tensor in four dimensions. We discuss the algebraic classification of a number of known higher dimensional spacetimes. There are many applications of the Weyl classification scheme, especially in conjunction with the higher dimensional frame formalism that has been developed in order to generalize the four dimensional Newman--Penrose formalism. For example, we discuss higher dimensional generalizations of the Goldberg-Sachs theorem and the Peeling theorem. We also discuss the higher dimensional Lorentzian spacetimes with vanishing scalar curvature invariants and constant scalar curvature invariants, which are of interest since they are solutions of supergravity theory.Comment: Topical Review for Classical and Quantum Gravity. Final published versio
    corecore