5 research outputs found

    Enneanuclear [Ni<sub>6</sub>Ln<sub>3</sub>] Cages: [Ln<sup>III</sup><sub>3</sub>] Triangles Capping [Ni<sup>II</sup><sub>6</sub>] Trigonal Prisms Including a [Ni<sub>6</sub>Dy<sub>3</sub>] Single-Molecule Magnet

    No full text
    The use of (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol) ligand, H<sub>3</sub>L, in Ni/Ln chemistry has led to the isolation of three new isostructural [Ni<sup>II</sup><sub>6</sub>Ln<sup>III</sup><sub>3</sub>] metallic cages. More specifically, the reaction of Ni­(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O, the corresponding lanthanide nitrate salt, and H<sub>3</sub>L in MeCN, under solvothermal conditions in the presence of NEt<sub>3</sub>, led to the isolation of three complexes with the formulas [Ni<sub>6</sub>Gd<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>1</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O), [Ni<sub>6</sub>Dy<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O (<b>2</b>·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O), and [Ni<sub>6</sub>Er<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>3</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O). The structure of all three clusters describes a [Ln<sup>III</sup><sub>3</sub>] triangle capping a [Ni<sup>II</sup><sub>6</sub>] trigonal prism. Direct current magnetic susceptibility studies in the 5–300 K range for complexes <b>1</b>–<b>3</b> reveal the different nature of the magnetic interactions within the clusters: dominant antiferromagnetic exchange interactions for the Dy<sup>III</sup> and Er<sup>III</sup> analogues and dominant ferromagnetic interactions for the Gd<sup>III</sup> example. Alternating current magnetic susceptibility measurements under zero external dc field displayed fully formed temperature- and frequency-dependent out-of-phase peaks for the [Ni<sup>II</sup><sub>6</sub>Dy<sup>III</sup><sub>3</sub>] analogue, establishing its single molecule magnetism behavior with <i>U</i><sub>eff</sub> = 24 K

    New members of the [Mn<sub>6</sub>/oxime] family and analogues with converging [Mn<sub>3</sub>] planes

    No full text
    <p>The synthesis, structural, and magnetic characterization of five new members of the hexanuclear oximate [Mn<sup>III</sup><sub>6</sub>] family are reported. All five clusters can be described with the general formula [Mn<sup>III</sup><sub>6</sub>O<sub>2</sub>(R-sao)<sub>6</sub>(R′-CO<sub>2</sub>)<sub>2</sub>(sol)<sub>x</sub>(H<sub>2</sub>O)<sub>y</sub>] (where R-saoH<sub>2</sub> = salicylaldoxime substituted at the oxime carbon with R = H, Me and Et; R′ = 1-naphthalene, 2-naphthalene, and 1-pyrene; sol = MeOH, EtOH, or MeCN; <i>x</i> = 0–4 and <i>y</i> = 0–4). More specifically, the reaction of Mn(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O with salicylaldoxime-like ligands and the appropriate carboxylic acid in alcoholic or MeCN solutions in the presence of base afforded complexes <b>1</b>–<b>5</b>: [Mn<sub>6</sub>O<sub>2</sub>(Me-sao)<sub>6</sub>(1-naphth-CO<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)(MeCN)]·4MeCN (<b>1</b>·4MeCN); [Mn<sub>6</sub>O<sub>2</sub>(Me-sao)<sub>6</sub>(2-naphth-CO<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)(MeCN)]·3MeCN·0.1H<sub>2</sub>O (<b>2</b>·3MeCN·0.1H<sub>2</sub>O); [Mn<sub>6</sub>O<sub>2</sub>(Et-sao)<sub>6</sub>(2-naphth-CO<sub>2</sub>)<sub>2</sub>(EtOH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>] (<b>3</b>); [Mn<sub>6</sub>O<sub>2</sub>(Et-sao)<sub>6</sub>(2-naphth-CO<sub>2</sub>)<sub>2</sub>(MeOH)<sub>6</sub>] (<b>4</b>) and [Mn<sub>6</sub>O<sub>2</sub>(sao)<sub>6</sub>(1-pyrene-CO<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(EtOH)<sub>2</sub>]·6EtOH (<b>5</b>·6EtOH). Clusters <b>3</b>, <b>4,</b> and <b>5</b> display the usual [Mn<sub>6</sub>/oximate] structural motif consisting of two [Mn<sub>3</sub>O] subunits bridged by two O<sub>oximate</sub> atoms from two R-sao<sup>2−</sup> ligands to form the hexanuclear complex in which the two triangular [Mn<sub>3</sub>] units are parallel to each other. On the contrary, clusters <b>1</b> and <b>2</b> display a highly distorted stacking arrangement of the two [Mn<sub>3</sub>] subunits resulting in two converging planes, forming a novel motif in the [Mn<sub>6</sub>] family. Investigation of the magnetic properties for all complexes reveal dominant antiferromagnetic interactions for <b>1</b>, <b>2,</b> and <b>5</b>, while <b>3</b> and <b>4</b> display dominant ferromagnetic interactions with a ground state of <i>S</i> = 12 for both clusters. Finally, <b>3</b> and <b>4</b> display single-molecule magnet behavior with <i>U</i><sub>eff</sub> = 63 and 36 K, respectively.</p

    2-Aminoisobutyric Acid in Co(II) and Co(II)/Ln(III) Chemistry: Homometallic and Heterometallic Clusters

    No full text
    The synthesis and magnetic properties of 13 new homo- and heterometallic Co­(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co<sup>II</sup><sub>4</sub>(aib)<sub>3</sub>(aibH)<sub>3</sub>(NO<sub>3</sub>)]­(NO<sub>3</sub>)<sub>4</sub>·2.8CH<sub>3</sub>OH·0.2H<sub>2</sub>O (<b>1</b>·2.8CH<sub>3</sub>OH·0.2H<sub>2</sub>O), {Na<sub>2</sub>[Co<sup>II</sup><sub>2</sub>(aib)<sub>2</sub>(N<sub>3</sub>)<sub>4</sub>(CH<sub>3</sub>OH)<sub>4</sub>]}<sub><i>n</i></sub> (<b>2</b>), [Co<sup>II</sup><sub>6</sub>La<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·0.5­[La­(NO<sub>3</sub>)<sub>6</sub>]·0.75­(ClO<sub>4</sub>)·1.75­(NO<sub>3</sub>)·3.2CH<sub>3</sub>CN·5.9H<sub>2</sub>O (<b>3</b>·3.2CH<sub>3</sub>CN·5.9H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Pr<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Pr­(NO<sub>3</sub>)<sub>5</sub>]·0.41­[Pr­(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·0.59­[Co­(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.2­(ClO<sub>4</sub>)·0.25H<sub>2</sub>O (<b>4</b>·0.25H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Nd<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.8</sub>(CH<sub>3</sub>OH)<sub>4.7</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·2.7­(ClO<sub>4</sub>)·0.5­(NO<sub>3</sub>)·2.26CH<sub>3</sub>OH·0.24H<sub>2</sub>O (<b>5</b>·2.26CH<sub>3</sub>OH·0.24H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Sm<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Sm­(NO<sub>3</sub>)<sub>5</sub>]·0.44­[Sm­(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·0.56­[Co­(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.22­(ClO<sub>4</sub>)·0.3H<sub>2</sub>O (<b>6</b>·0.3H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Eu<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>OH)<sub>4.87</sub>(H<sub>2</sub>O)<sub>1.13</sub>]­(ClO<sub>4</sub>)<sub>2.5</sub>(NO<sub>3</sub>)<sub>0.5</sub>·2.43CH<sub>3</sub>OH·0.92H<sub>2</sub>O (<b>7</b>·2.43CH<sub>3</sub>OH·0.92H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Gd<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.9</sub>(CH<sub>3</sub>OH)<sub>4.9</sub>(H<sub>2</sub>O)<sub>1.2</sub>]·2.6­(ClO<sub>4</sub>)·0.5­(NO<sub>3</sub>)·2.58CH<sub>3</sub>OH·0.47H<sub>2</sub>O (<b>8</b>·2.58CH<sub>3</sub>OH·0.47H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Tb<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Tb­(NO<sub>3</sub>)<sub>5</sub>]·0.034­[Tb­(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>0.5</sub>]·0.656­[Co­(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.343­(ClO<sub>4</sub>)·0.3H<sub>2</sub>O (<b>9</b>·0.3H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Dy<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.9</sub>(CH<sub>3</sub>OH)<sub>4.92</sub>(H<sub>2</sub>O)<sub>1.18</sub>]­(ClO<sub>4</sub>)<sub>2.6</sub>(NO<sub>3</sub>)<sub>0.5</sub>·2.5CH<sub>3</sub>OH·0.5H<sub>2</sub>O (<b>10</b>·2.5CH<sub>3</sub>OH·0.5H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Ho<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·0.27­[Ho­(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.35</sub>(H<sub>2</sub>O)<sub>0.15</sub>]·0.656­[Co­(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.171­(ClO<sub>4</sub>) (<b>11</b>), [Co<sup>II</sup><sub>6</sub>Er<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2.5</sub>(H<sub>2</sub>O)<sub>3.5</sub>]­(ClO<sub>4</sub>)<sub>3</sub>·CH<sub>3</sub>CN·0.75H<sub>2</sub>O (<b>12</b>·CH<sub>3</sub>CN·0.75H<sub>2</sub>O), and [Co<sup>II</sup><sub>6</sub>Tm<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)<sub>6</sub>]·1.48­(ClO<sub>4</sub>)·1.52­(NO<sub>3</sub>)·3H<sub>2</sub>O (<b>13</b>·3H<sub>2</sub>O). Complex <b>1</b> describes a distorted tetrahedral metallic cluster, while complex <b>2</b> can be considered to be a 2-D coordination polymer. Complexes <b>3</b>–<b>13</b> can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co<sup>II</sup><sub>6</sub>] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2–300 K range for complexes <b>1</b>, <b>3</b>, <b>5</b>, <b>7</b>, <b>8</b>, <b>10</b>,<b> 12</b>, and <b>13</b>, revealing the possibility of single molecule magnetism behavior for complex <b>10</b>

    2-Aminoisobutyric Acid in Co(II) and Co(II)/Ln(III) Chemistry: Homometallic and Heterometallic Clusters

    No full text
    The synthesis and magnetic properties of 13 new homo- and heterometallic Co­(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co<sup>II</sup><sub>4</sub>(aib)<sub>3</sub>(aibH)<sub>3</sub>(NO<sub>3</sub>)]­(NO<sub>3</sub>)<sub>4</sub>·2.8CH<sub>3</sub>OH·0.2H<sub>2</sub>O (<b>1</b>·2.8CH<sub>3</sub>OH·0.2H<sub>2</sub>O), {Na<sub>2</sub>[Co<sup>II</sup><sub>2</sub>(aib)<sub>2</sub>(N<sub>3</sub>)<sub>4</sub>(CH<sub>3</sub>OH)<sub>4</sub>]}<sub><i>n</i></sub> (<b>2</b>), [Co<sup>II</sup><sub>6</sub>La<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·0.5­[La­(NO<sub>3</sub>)<sub>6</sub>]·0.75­(ClO<sub>4</sub>)·1.75­(NO<sub>3</sub>)·3.2CH<sub>3</sub>CN·5.9H<sub>2</sub>O (<b>3</b>·3.2CH<sub>3</sub>CN·5.9H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Pr<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Pr­(NO<sub>3</sub>)<sub>5</sub>]·0.41­[Pr­(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·0.59­[Co­(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.2­(ClO<sub>4</sub>)·0.25H<sub>2</sub>O (<b>4</b>·0.25H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Nd<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.8</sub>(CH<sub>3</sub>OH)<sub>4.7</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·2.7­(ClO<sub>4</sub>)·0.5­(NO<sub>3</sub>)·2.26CH<sub>3</sub>OH·0.24H<sub>2</sub>O (<b>5</b>·2.26CH<sub>3</sub>OH·0.24H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Sm<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Sm­(NO<sub>3</sub>)<sub>5</sub>]·0.44­[Sm­(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·0.56­[Co­(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.22­(ClO<sub>4</sub>)·0.3H<sub>2</sub>O (<b>6</b>·0.3H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Eu<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>OH)<sub>4.87</sub>(H<sub>2</sub>O)<sub>1.13</sub>]­(ClO<sub>4</sub>)<sub>2.5</sub>(NO<sub>3</sub>)<sub>0.5</sub>·2.43CH<sub>3</sub>OH·0.92H<sub>2</sub>O (<b>7</b>·2.43CH<sub>3</sub>OH·0.92H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Gd<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.9</sub>(CH<sub>3</sub>OH)<sub>4.9</sub>(H<sub>2</sub>O)<sub>1.2</sub>]·2.6­(ClO<sub>4</sub>)·0.5­(NO<sub>3</sub>)·2.58CH<sub>3</sub>OH·0.47H<sub>2</sub>O (<b>8</b>·2.58CH<sub>3</sub>OH·0.47H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Tb<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Tb­(NO<sub>3</sub>)<sub>5</sub>]·0.034­[Tb­(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>0.5</sub>]·0.656­[Co­(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.343­(ClO<sub>4</sub>)·0.3H<sub>2</sub>O (<b>9</b>·0.3H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Dy<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.9</sub>(CH<sub>3</sub>OH)<sub>4.92</sub>(H<sub>2</sub>O)<sub>1.18</sub>]­(ClO<sub>4</sub>)<sub>2.6</sub>(NO<sub>3</sub>)<sub>0.5</sub>·2.5CH<sub>3</sub>OH·0.5H<sub>2</sub>O (<b>10</b>·2.5CH<sub>3</sub>OH·0.5H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Ho<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·0.27­[Ho­(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.35</sub>(H<sub>2</sub>O)<sub>0.15</sub>]·0.656­[Co­(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.171­(ClO<sub>4</sub>) (<b>11</b>), [Co<sup>II</sup><sub>6</sub>Er<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2.5</sub>(H<sub>2</sub>O)<sub>3.5</sub>]­(ClO<sub>4</sub>)<sub>3</sub>·CH<sub>3</sub>CN·0.75H<sub>2</sub>O (<b>12</b>·CH<sub>3</sub>CN·0.75H<sub>2</sub>O), and [Co<sup>II</sup><sub>6</sub>Tm<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)<sub>6</sub>]·1.48­(ClO<sub>4</sub>)·1.52­(NO<sub>3</sub>)·3H<sub>2</sub>O (<b>13</b>·3H<sub>2</sub>O). Complex <b>1</b> describes a distorted tetrahedral metallic cluster, while complex <b>2</b> can be considered to be a 2-D coordination polymer. Complexes <b>3</b>–<b>13</b> can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co<sup>II</sup><sub>6</sub>] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2–300 K range for complexes <b>1</b>, <b>3</b>, <b>5</b>, <b>7</b>, <b>8</b>, <b>10</b>,<b> 12</b>, and <b>13</b>, revealing the possibility of single molecule magnetism behavior for complex <b>10</b>

    Heptanuclear Heterometallic [Cu<sub>6</sub>Ln] Clusters: Trapping Lanthanides into Copper Cages with Artificial Amino Acids

    No full text
    Employment of the artificial amino acid 2-amino-isobutyric acid, aibH, in Cu<sup>II</sup> and Cu<sup>II</sup>/Ln<sup>III</sup> chemistry led to the isolation and characterization of 12 new heterometallic heptanuclear [Cu<sub>6</sub>Ln­(aib)<sub>6</sub>(OH)<sub>3</sub>(OAc)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>] complexes consisting of trivalent lanthanide centers within a hexanuclear copper trigonal prism (aibH = 2-amino-butyric acid; Ln = Ce (<b>1</b>), Pr (<b>2</b>), Nd (<b>3</b>), Sm (<b>4</b>), Eu (<b>5</b>), Gd (<b>6</b>), Tb (<b>7</b>), Dy (<b>8</b>), Ho (<b>9</b>), Er (<b>10</b>), Tm (<b>11</b>), and Yb (<b>12</b>)). Direct curent magnetic susceptibility studies have been carried out in the 5–300 K range for all complexes, revealing the different nature of the magnetic interactions between the 3d–4f metallic pairs: dominant antiferromagnetic interactions for the majority of the pairs and dominant ferromagnetic interactions for when the lanthanide center is Gd<sup>III</sup> and Dy<sup>III</sup>. Furthermore, alternating current magnetic susceptibility studies reveal the possibility of single-molecule magnetism behavior for complexes <b>7</b> and <b>8</b>. Finally, complexes <b>2</b>, <b>5</b>–<b>8</b>, <b>10</b>, and <b>12</b> were analyzed using positive ion electrospray mass spectrometry (ES-MS), establishing the structural integrity of the heterometallic heptanuclear cage structure in acetonitrile
    corecore