8 research outputs found

    Morphological and Transcriptomic Analysis of a Beetle Chemosensory System Reveals a Gnathal Olfactory Center

    Get PDF
    OR gene tissue expression and their chromosomal localization. a Venn diagram showing the number of ORs expressed (RPKM ≥ 0.5) in the different body parts: antennae, legs, mouthparts (as piece of the head capsule anterior of the antennae), heads (the whole head capsule including mouthparts but excluding the antennae), and bodies (excluding head and legs). b Venn diagram comparing our results (yellow, green) with data from Engsontia et al. [115] (blue, red). Number of expressed ORs, defined by RPKM ≥ 0.5 (yellow), by RT-PCR (blue), not expressed RPKM < 0.5 (green), or with no RT-PCR amplicon (red). ORs of the brown group were not previously tested by Engsontia et al. c Chromosomal localization of T. castaneum ORs. Based on the Georgia GA-2 strain genome assembly 3.0 [81], only chromosomal linkage groups containing an IR or SNMP are depicted. Gene clusters are indicated by a number referring to the chromosome and a letter conveys the relative position on the chromosome. The number of genes within this cluster is indicated in the square brackets. (PDF 277 kb

    Neural correlates of path integration during visually simulated self-motion

    No full text

    Inter-trial phase coherence of visually evoked postural responses in virtual reality

    No full text
    Vision plays a central role in maintaining balance. When humans perceive their body as moving, they trigger counter movements. This results in body sway, which has typically been investigated by measuring the body's center of pressure (COP). Here, we aimed to induce visually evoked postural responses (VEPR) by simulating self-motion in virtual reality (VR) using a sinusoidally oscillating 'moving room' paradigm. Ten healthy subjects participated in the experiment. Stimulation consisted of a 3D-cloud of random dots, presented through a VR headset, which oscillated sinusoidally in the anterior-posterior direction at different frequencies. We used a force platform to measure subjects' COP over time and quantified the resulting trajectory by wavelet analyses including inter-trial phase coherence (ITPC). Subjects exhibited significant coupling of their COP to the respective stimulus. Even when spectral analysis of postural sway showed only small responses in the expected frequency bands (power), ITPC revealed an almost constant strength of coupling to the stimulus within but also across subjects and presented frequencies. Remarkably, ITPC even revealed a strong phase coupling to stimulation at 1.5 Hz, which exceeds the frequency range that has generally been attributed to the coupling of human postural sway to an oscillatory visual scenery. These findings suggest phase-locking to be an essential feature of visuomotor control

    Additional file 9: Figure S5. of Morphological and Transcriptomic Analysis of a Beetle Chemosensory System Reveals a Gnathal Olfactory Center

    Get PDF
    IR gene tissue expression and chromosomal localization of IR and SNMP genes. a Venn diagram showing the number of IRs expressed (RPKM ≥ 0.5) in the different body parts: antennae, legs, mouthparts (as a piece of the head capsule anterior of the antennae), heads (the whole head capsule including mouthparts but excluding the antennae), and bodies (excluding head and legs). b Based on Georgia GA-2 strain genome assembly 3 [81], only chromosomal linkage groups containing an IR or SNMP are depicted. Gene clusters are indicated by a number referring to the chromosome and a letter conveys the relative position on the chromosome. The number of genes within this cluster is indicated in square brackets. (PDF 66 kb

    Additional file 15: Figure S11. of Morphological and Transcriptomic Analysis of a Beetle Chemosensory System Reveals a Gnathal Olfactory Center

    Get PDF
    Chromosomal localization of potential T. castaneum ODE genes. Based on Georgia GA-2 strain genome assembly 3.0 [81], aldehyde dehydrogenase (ALDH, in grey), aldehyde oxidase (ALOX, in orange), carboxylesterase (CES, in blue), epoxide hydrolase (EH, in green), glutathione S-transferase (GST, in purple), and cytochrome P450 (CYP, in magenta). Gene clusters are indicated by a number referring to the chromosome and a letter conveys the relative position on the chromosome. The number of genes within this cluster is indicated in the square brackets. (PDF 257 kb

    Simultaneous confidence sets for several effective doses

    Get PDF
    Construction of simultaneous confidence sets for several effective doses currently relies on inverting the Scheffé type simultaneous confidence band, which is known to be conservative. We develop novel methodology to make the simultaneous coverage closer to its nominal level, for both two‐sided and one‐sided simultaneous confidence sets. Our approach is shown to be considerably less conservative than the current method, and is illustrated with an example on modeling the effect of smoking status and serum triglyceride level on the probability of the recurrence of a myocardial infarction

    Additional file 6: Figure S4. of Morphological and Transcriptomic Analysis of a Beetle Chemosensory System Reveals a Gnathal Olfactory Center

    No full text
    Ipsilateral antennal projection. Maximum intensity projection of a brain labeled with an antibody against synapsin (green) and a neurotracer resulting from an antennal backfill (magenta). The antennal backfill labels exclusively structures in the ipsilateral hemisphere, mainly the AL via the antennal nerve (*), and a tract (arrowhead) descending to the gnathal ganglion. The inset depicts a projection of only a few optical sections showing fibers interconnecting the AL and the protocerebrum with some arborizations in the accessory medulla of the optical lobe (arrow) suggesting an integration of circadian information. (TIF 3816 kb

    Additional file 12: Figure S8. of Morphological and Transcriptomic Analysis of a Beetle Chemosensory System Reveals a Gnathal Olfactory Center

    No full text
    Phylogenetic mid-point rooted tree of the GRs based on protein sequences. Outer rings represent the expression in body, mouthparts (T. castaneum: palps, mandible, labrum, and labium; D. melanogaster: palp and proboscis; An. gambiae: maxillary palp) and antenna as a percentage compared to the highest expressed gene according to the scale in the left upper corner. Note that the methods used to obtain the different expression data (RNAseq and microarray) are not directly comparable. This figure can, thus, only give an impression of the tissue-specific abundance of the transcripts. The scale bars within the trees represent 1 amino acid substitution per site. Potential sugar and fructose receptors are labeled and highlighted in yellow and in grey, and CO2 receptors are highlighted in orange. (PDF 1733 kb
    corecore