4 research outputs found

    Data Independent Analysis of IgG Glycoforms in Samples of Unfractionated Human Plasma

    No full text
    Glycosylation regulates functional responses mediated by the interaction of IgG with their receptors. Multiple analytical methods have been designed for the determination of the IgG N-glycan microheterogeneity, including MS methods for the analysis of site specific glycoforms of IgG. However, measurement of low abundant glycoforms remains challenging in complex samples like serum without enrichment of the IgG. We present a workflow for quantitative analysis of site specific glycoforms of IgG based on data independent acquisition (DIA) of Y-ions generated under “minimal” fragmentation conditions. The adjusted collision induced dissociation (CID) conditions generate specific Y-ions in the yield of up to 60% precursor ion intensity. These selective fragments, measured in high resolution, improve specificity of detection compared to the typically quantified B-ions which have higher overall intensity but lower signal-to-noise ratios. Under optimized conditions, we achieve label-free quantification of the majority of previously reported glycoforms of IgG (26 glycoforms of IgG1, 22 glycoforms of IgG 2/3, and 19 glycoforms of IgG4) directly in unfractionated samples of human plasma and we detect traces of previously unreported glycoforms of IgG1, including doubly fucosylated glycoforms. The SWATH data independent quantification of IgG glycoforms in pooled plasma samples of patients with liver cirrhosis detects reliably the expected changes in the quantity of major glycoforms compared to healthy controls. Our results show that optimized CID fragmentation enables DIA of IgG glycoforms and suggest that such workflow may enable quantitative analyses of the glycoproteome in complex matrixes

    Quantification of Fucosylated Hemopexin and Complement Factor H in Plasma of Patients with Liver Disease

    No full text
    Enhanced fucosylation has been suggested as a marker for serologic monitoring of liver disease and hepatocellular carcinoma (HCC). We present a workflow for quantitative site-specific analysis of fucosylation and apply it to a comparison of hemopexin (HPX) and complement factor H (CFH), two liver-secreted glycoproteins, in healthy individuals and patients with liver cirrhosis and HCC. Label-free LC-MS quantification of glycopeptides derived from these purified glycoproteins was performed on pooled samples (2 pools/group, 5 samples/pool) and complemented by glycosidase assisted analysis using sialidase and endoglycosidase F2/F3, respectively, to improve resolution of glycoforms. Our analysis, presented as relative abundance of individual fucosylated glycoforms normalized to the level of their nonfucosylated counterparts, revealed a consistent increase in fucosylation in liver disease with significant site- and protein-specific differences. We have observed the highest microheterogeneity of glycoforms at the N187 site of HPX, absence of core fucosylation at N882 and N911 sites of CFH, or a higher degree of core fucosylation in CFH compared to HPX, but we did not identify changes differentiating HCC from matched cirrhosis samples. Glycosidase assisted LC-MS-MRM analysis of individual patient samples prepared by a simplified protocol confirmed the quantitative differences. Transitions specific to outer arm fucose document a disease-associated increase in outer arm fucose on both bi- and triantennary glycans at the N187 site of HPX. Further verification is needed to confirm that enhanced fucosylation of HPX and CFH may serve as an indicator of premalignant liver disease. The analytical strategy can be readily adapted to analysis of other proteins in the appropriate disease context

    Protein and Site Specificity of Fucosylation in Liver-Secreted Glycoproteins

    No full text
    Chronic liver diseases are a serious health problem worldwide. One of the frequently reported glycan alterations in liver disease is aberrant fucosylation, which was suggested as a marker for noninvasive serologic monitoring. We present a case study that compares site specific glycoforms of four proteins including haptoglobin, complement factor H, kininogen-1, and hemopexin isolated from the same patient. Our exoglycosidase-assisted LC–MS/MS analysis confirms the high degree of fucosylation of some of the proteins but shows that microheterogeneity is protein- and site-specific. MSn analysis of permethylated detached glycans confirms the presence of LeY glycoforms on haptoglobin, which cannot be detected in hemopexin or complement factor H; all three proteins carry Lewis and H epitopes. Core fucosylation is detectable in only trace amounts in haptoglobin but with confidence on hemopexin and complement factor H, where core fucosylation of the bi-antennary glycans on select glycopeptides reaches 15–20% intensity. These protein-specific differences in fucosylation, observed in proteins isolated from the same patient source, suggest that factors other than up-regulation of enzymatic activity regulate the microheterogeneity of glycoforms. This has implications for selection of candidate proteins for disease monitoring and suggests that site-specific glycoforms have structural determinants, which could lead to functional consequences for specific subsets of proteins or their domains

    Site-Specific Glycan Microheterogeneity of Inter-Alpha-Trypsin Inhibitor Heavy Chain H4

    No full text
    Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) is a 120 kDa acute-phase glycoprotein produced primarily in the liver, secreted into the blood, and identified in serum. ITIH4 is involved in liver development and stabilization of the extracellular matrix (ECM), and its expression is altered in liver disease. In this study, we aimed to characterize glycosylation of recombinant and serum-derived ITIH4 using analytical mass spectrometry. Recombinant ITIH4 was analyzed to optimize glycopeptide analyses, followed by serum-derived ITIH4. First, we confirmed that the four ITIH4 N-X-S/T sequons (N81, N207, N517, and N577) were glycosylated by treating ITIH4 tryptic/GluC glycopeptides with PNGaseF in the presence of <sup>18</sup>O water. Next, we performed glycosidase-assisted LC–MS/MS analysis of ITIH4 trypsin-GluC glycopeptides enriched via hydrophilic interaction liquid chromatography to characterize ITIH4 N-glycoforms. While microheterogeneity of N-glycoforms differed between ITIH4 protein expressed in HEK293 cells and protein isolated from serum, occupancy of N-glycosylation sites did not differ. A fifth N-glycosylation site was discovered at N274 with the rare nonconsensus NVV motif. Site N274 contained high-mannose N-linked glycans in both serum and recombinant ITIH4. We also identified isoform-specific ITIH4 O-glycoforms and documented that utilization of O-glycosylation sites on ITIH4 differed between the cell line and serum
    corecore