35 research outputs found

    The Comparative Effects of Myo-Inositol and Metformin Therapy on the Clinical and Biochemical Parameters of Women of Normal Weight Suffering from Polycystic Ovary Syndrome

    No full text
    Background: Polycystic ovary syndrome (PCOS) is a multisystem reproductive–metabolic disorder and the most common endocrine cause of infertility. The objective of our study was to determine the influence of myo-inositol (MI) on insulin resistance (IR), menstrual cycle regularity, and hyperandrogenism in women suffering from PCOS with normal BMI and diagnosed IR. Methods: We performed a prospective randomized controlled trial (RCT) that included 60 participants with PCOS who had IR and a normal BMI. Two groups were formed. A group of thirty patients received MI, and thirty patients in the control group received metformin (MET). Results: A statistically significant reduction in the area under the curve (AUC) of insulin values during the oral glucose tolerance test (OGTT) was recorded in both examined groups after the applied therapy with MI and MET. The regularity of the menstrual cycle in both groups was improved in >90% of patients. A statistically significant decrease in androgenic hormones (testosterone, SHBG, free androgen index—FAI, androstenedione) was recorded in both groups and did not differ between the groups. Conclusions: Both MI and MET can be considered very effective in the regulation of IR, menstrual cycle irregularities, and hyperandrogenism in women with PCOS

    Prenatal monitoring of pregnancies complicated by diabetes mellitus

    Get PDF
    Preconception and prenatal monitoring evaluate the condition of the mother's underlying disease and possible complications during pregnancy. Before conception, patients with diabetes should be informed that suboptimal glycoregulation is associated with reduced fertility and pregnancy losses. The task of the perinatologist in pregnancies affected by diabetes mellitus is to prevent complications of the underlying disease, such as hypoglycemic crises. Another important component of prenatal care in diabetic pregnancies is the recognition and prevention of pregnancy complications such as preeclampsia, polyhydramnios, congenital malformations, fetal macrosomia, and infections

    Nutrition in pregnancy with diabetes mellitus

    Get PDF
    The nutritional needs of diabetic pregnancies are different from normal pregnancies. Differences in nutritional recommendations can also be seen between pregnant women who are using and who are not using insulin therapy. In this literature review, recommendations for different meal proportions of carbohydrates, proteins, and fats in the diets of pregnant women with diabetes mellitus are listed. Different meal plans were also addressed in this group of patients. The role of exercise in the management of diabetes in pregnancy is undeniable and different approaches found in the literature are presented

    Theoretical basis of perinatology therapy in pregnant women with diabetes mellitus

    Get PDF
    Diabetes mellitus is a metabolic disorder that can occur before pregnancy, be detected during pregnancy, or develop during pregnancy. Therapeutic modalities available today significantly facilitate glycoregulation during pregnancy and childbirth. This review presents different insulin regimens, as well as the advantages and disadvantages of oral antidiabetic agents use with a special focus on hypoglycemia. The importance of maintaining optimal glycemic levels and educating patients in blood glucose self-measurement is explained

    Doppler Indices of the Uterine, Umbilical and Fetal Middle Cerebral Artery in Diabetic versus Non-Diabetic Pregnancy: Systematic Review and Meta-Analysis

    No full text
    Background and Objectives: The aim of this study was to assess the differences in Doppler indices of the uterine (Ut), umbilical (UA), and middle cerebral artery (MCA) in diabetic versus non-diabetic pregnancies by conducting a comprehensive systematic review of the literature with a meta-analysis. Materials and Methods: PubMed, Web of Science, and SCOPUS were searched for studies that measured the pulsatility index (PI), resistance index (RI), and systolic/diastolic ratio index (S/D ratio) of the umbilical artery, middle cerebral artery, and uterine artery in diabetic versus non-diabetic pregnancies. Two reviewers independently evaluated the eligibility of studies, abstracted data, and performed quality assessments according to standardized protocols. The standardized mean difference (SMD) was used as a measure of effect size. Heterogeneity was assessed using the I2 statistic. Publication bias was evaluated by means of funnel plots. Results: A total of 62 publications were included in the qualitative and 43 in quantitative analysis. The UA-RI, UtA-PI, and UtA-S/D ratios were increased in diabetic compared with non-diabetic pregnancies. Subgroup analysis showed that levels of UtA-PI were significantly higher during the third, but not during the first trimester of pregnancy in diabetic versus non-diabetic pregnancies. No differences were found for the UA-PI, UA-S/D ratio, MCA-PI, MCA-RI, MCA-S/D ratio, or UtA-RI between diabetic and non-diabetic pregnancies. Conclusions: This meta-analysis revealed the presence of hemodynamic changes in uterine and umbilical arteries, but not in the middle cerebral artery in pregnancies complicated by diabetes

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation
    corecore