3,613 research outputs found

    Dark state lasers

    Full text link
    We propose a new type of laser resonator based on imaginary "energy-level splitting" (imaginary coupling, or quality factor Q splitting) in a pair of coupled microcavities. A particularly advantageous arrangement involves two microring cavities with different free-spectral ranges (FSRs) in a configuration wherein they are coupled by "far-field" interference in a shared radiation channel. A novel Vernier-like effect for laser resonators is designed where only one longitudinal resonant mode has a lower loss than the small signal gain and can achieve lasing while all other modes are suppressed. This configuration enables ultra-widely tunable single-frequency lasers based on either homogeneously or inhomogeneously broadened gain media. The concept is an alternative to the common external cavity configurations for achieving tunable single-mode operation in a laser. The proposed laser concept builds on a high-Q "dark state" that is established by radiative interference coupling and bears a direct analogy to parity-time (PT) symmetric Hamiltonians in optical systems. Variants of this concept should be extendable to parametric-gain based oscillators, enabling use of ultrabroadband parametric gain for widely tunable single-frequency light sources

    Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing

    Full text link
    We propose and demonstrate localized mode coupling as a viable dispersion engineering technique for phase-matched resonant four-wave mixing (FWM). We demonstrate a dual-cavity resonant structure that employs coupling-induced frequency splitting at one of three resonances to compensate for cavity dispersion, enabling phase-matching. Coupling strength is controlled by thermal tuning of one cavity enabling active control of the resonant frequency-matching. In a fabricated silicon microresonator, we show an 8 dB enhancement of seeded FWM efficiency over the non-compensated state. The measured four-wave mixing has a peak wavelength conversion efficiency of -37.9 dB across a free spectral range (FSR) of 3.334 THz (\sim27 nm). Enabled by strong counteraction of dispersion, this FSR is, to our knowledge, the largest in silicon to demonstrate FWM to date. This form of mode-coupling-based, active dispersion compensation can be beneficial for many FWM-based devices including wavelength converters, parametric amplifiers, and widely detuned correlated photon-pair sources. Apart from compensating intrinsic dispersion, the proposed mechanism can alternatively be utilized in an otherwise dispersionless resonator to counteract the detuning effect of self- and cross-phase modulation on the pump resonance during FWM, thereby addressing a fundamental issue in the performance of light sources such as broadband optical frequency combs

    Aspherical Core-Collapse Supernovae in Red Supergiants Powered by Nonrelativistic Jets

    Get PDF
    We explore the observational characteristics of jet-driven supernovae by simulating bipolar-jet-driven explosions in a red supergiant progenitor. We present results of four models in which we hold the injected kinetic energy at a constant 105110^{51} ergs across all jet models but vary the specific characteristics of the jets to explore the influence of the nature of jets on the structure of the supernova ejecta. We evolve the explosions past shock-breakout and into quasi-homologous expansion of the supernova envelope into a red supergiant wind. The oppositely-directed, nickel-rich jets give a large-scale asymmetry that may account for the non-spherical excitation and substructure of spectral lines such as Hα\alpha and He I 10830\AA. Jets with a large fraction of kinetic to thermal energy punch through the progenitor envelope and give rise to explosions that would be observed to be asymmetric from the earliest epochs, inconsistent with spectropolarimetric measurements of Type II supernovae. Jets with higher thermal energy fractions result in explosions that are roughly spherical at large radii but are significantly elongated at smaller radii, deep inside the ejecta, in agreement with the polarimetric observations. We present shock breakout light curves that indicate that strongly aspherical shock breakouts are incompatible with recent {\it GALEX} observations of shock breakout from red supergiant stars. Comparison with observations indicates that jets must deposit their kinetic energy efficiently throughout the ejecta while in the hydrogen envelope. Thermal energy-dominated jets satisfy this criterion and yield many of the observational characteristics of Type II supernovae.Comment: 21 pages, 19 figures, submitted to ApJ on 4 Nov 200

    Ultra-low-loss CMOS-Compatible Waveguide Crossing Arrays Based on Multimode Bloch Waves and Imaginary Coupling

    Full text link
    We experimentally demonstrate broadband waveguide crossing arrays showing ultra low loss down to 0.040.04\,dB/crossing (0.9%0.9\%), matching theory, and crosstalk suppression over 3535\,dB, in a CMOS-compatible geometry. The principle of operation is the tailored excitation of a low-loss spatial Bloch wave formed by matching the periodicity of the crossing array to the difference in propagation constants of the 1st^\text{st}- and 3rd^\text{rd}-order TE-like modes of a multimode silicon waveguide. Radiative scattering at the crossing points acts like a periodic imaginary-permittivity perturbation that couples two supermodes, which results in imaginary (radiative) propagation-constant splitting and gives rise to a low-loss, unidirectional breathing Bloch wave. This type of crossing array provides a robust implementation of a key component enabling dense photonic integration

    Acute coronary syndrome in diclofenac sodium-induced type I hypersensitivity reaction : Kounis syndrome

    Get PDF
    Drug-induced type I hypersensitivity reactions are frequent. Sometimes, acute coronary syndrome (ACS) can be registered in such patients, which may have a serious impact on the course and management of the allergic reaction. Because of potentially atypical ACS clinical presentations, the ECG is an obligatory diagnostic tool in any allergic reaction. Coronary artery spasm is the pathophysiological basis of ACS, triggered by the action of potent vasoactive mediators (histamine, neutral proteases, arachidonic acid products) released from the cells involved in type I hypersensitivity. Allergic angina and allergic myocardial infarction are referred to as Kounis Syndrome. We describe herein a case of ACS in a patient with registered systemic immediate hypersensitivity reaction which developed following the muscular administration of diclofenac sodium.peer-reviewe
    corecore