3,613 research outputs found
Dark state lasers
We propose a new type of laser resonator based on imaginary "energy-level
splitting" (imaginary coupling, or quality factor Q splitting) in a pair of
coupled microcavities. A particularly advantageous arrangement involves two
microring cavities with different free-spectral ranges (FSRs) in a
configuration wherein they are coupled by "far-field" interference in a shared
radiation channel. A novel Vernier-like effect for laser resonators is designed
where only one longitudinal resonant mode has a lower loss than the small
signal gain and can achieve lasing while all other modes are suppressed. This
configuration enables ultra-widely tunable single-frequency lasers based on
either homogeneously or inhomogeneously broadened gain media. The concept is an
alternative to the common external cavity configurations for achieving tunable
single-mode operation in a laser. The proposed laser concept builds on a high-Q
"dark state" that is established by radiative interference coupling and bears a
direct analogy to parity-time (PT) symmetric Hamiltonians in optical systems.
Variants of this concept should be extendable to parametric-gain based
oscillators, enabling use of ultrabroadband parametric gain for widely tunable
single-frequency light sources
Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing
We propose and demonstrate localized mode coupling as a viable dispersion
engineering technique for phase-matched resonant four-wave mixing (FWM). We
demonstrate a dual-cavity resonant structure that employs coupling-induced
frequency splitting at one of three resonances to compensate for cavity
dispersion, enabling phase-matching. Coupling strength is controlled by thermal
tuning of one cavity enabling active control of the resonant
frequency-matching. In a fabricated silicon microresonator, we show an 8 dB
enhancement of seeded FWM efficiency over the non-compensated state. The
measured four-wave mixing has a peak wavelength conversion efficiency of -37.9
dB across a free spectral range (FSR) of 3.334 THz (27 nm). Enabled by
strong counteraction of dispersion, this FSR is, to our knowledge, the largest
in silicon to demonstrate FWM to date. This form of mode-coupling-based, active
dispersion compensation can be beneficial for many FWM-based devices including
wavelength converters, parametric amplifiers, and widely detuned correlated
photon-pair sources. Apart from compensating intrinsic dispersion, the proposed
mechanism can alternatively be utilized in an otherwise dispersionless
resonator to counteract the detuning effect of self- and cross-phase modulation
on the pump resonance during FWM, thereby addressing a fundamental issue in the
performance of light sources such as broadband optical frequency combs
Aspherical Core-Collapse Supernovae in Red Supergiants Powered by Nonrelativistic Jets
We explore the observational characteristics of jet-driven supernovae by
simulating bipolar-jet-driven explosions in a red supergiant progenitor. We
present results of four models in which we hold the injected kinetic energy at
a constant ergs across all jet models but vary the specific
characteristics of the jets to explore the influence of the nature of jets on
the structure of the supernova ejecta. We evolve the explosions past
shock-breakout and into quasi-homologous expansion of the supernova envelope
into a red supergiant wind. The oppositely-directed, nickel-rich jets give a
large-scale asymmetry that may account for the non-spherical excitation and
substructure of spectral lines such as H and He I 10830\AA. Jets with a
large fraction of kinetic to thermal energy punch through the progenitor
envelope and give rise to explosions that would be observed to be asymmetric
from the earliest epochs, inconsistent with spectropolarimetric measurements of
Type II supernovae. Jets with higher thermal energy fractions result in
explosions that are roughly spherical at large radii but are significantly
elongated at smaller radii, deep inside the ejecta, in agreement with the
polarimetric observations. We present shock breakout light curves that indicate
that strongly aspherical shock breakouts are incompatible with recent {\it
GALEX} observations of shock breakout from red supergiant stars. Comparison
with observations indicates that jets must deposit their kinetic energy
efficiently throughout the ejecta while in the hydrogen envelope. Thermal
energy-dominated jets satisfy this criterion and yield many of the
observational characteristics of Type II supernovae.Comment: 21 pages, 19 figures, submitted to ApJ on 4 Nov 200
Ultra-low-loss CMOS-Compatible Waveguide Crossing Arrays Based on Multimode Bloch Waves and Imaginary Coupling
We experimentally demonstrate broadband waveguide crossing arrays showing
ultra low loss down to dB/crossing (), matching theory, and
crosstalk suppression over dB, in a CMOS-compatible geometry. The
principle of operation is the tailored excitation of a low-loss spatial Bloch
wave formed by matching the periodicity of the crossing array to the difference
in propagation constants of the 1- and 3-order TE-like
modes of a multimode silicon waveguide. Radiative scattering at the crossing
points acts like a periodic imaginary-permittivity perturbation that couples
two supermodes, which results in imaginary (radiative) propagation-constant
splitting and gives rise to a low-loss, unidirectional breathing Bloch wave.
This type of crossing array provides a robust implementation of a key component
enabling dense photonic integration
Acute coronary syndrome in diclofenac sodium-induced type I hypersensitivity reaction : Kounis syndrome
Drug-induced type I hypersensitivity reactions are frequent. Sometimes, acute coronary syndrome (ACS) can be registered in such patients, which may have a serious impact on the course and management of the allergic reaction. Because of potentially atypical ACS clinical presentations, the ECG is an obligatory diagnostic tool in any allergic reaction. Coronary artery spasm is the pathophysiological basis of ACS, triggered by the action of potent vasoactive mediators (histamine, neutral proteases, arachidonic acid products) released from the cells involved in type I hypersensitivity. Allergic angina and allergic myocardial infarction are referred to as Kounis Syndrome. We describe herein a case of ACS in a patient with registered systemic immediate hypersensitivity reaction which developed following the muscular administration of diclofenac sodium.peer-reviewe
Recommended from our members
A review of the rationales for corporate risk management: fashion or the need?
This paper presents the extensive literature survey based both on theoretical rationales for hedging as well as the empirical evidence that support the implications of the theory regarding the arguments for the corporate risk management relevance and its influence on the company’s value. The survey of literature presented in this paper has revealed that there are two chief classes of rationales for corporate decision to hedge - maximisation of shareholder value or maximisation of managers’ private utility. The paper concludes that, the total benefit of hedging is the combination of all these motives and, if the costs of using corporate risk management instruments are less than the benefits provided via the avenues mentioned in this paper, or any other benefit perceived by the market, then risk management is a shareholder-value enhancing activity
- …