82 research outputs found

    The Zero-Point Field and Inertia

    Get PDF
    A brief overview is presented of the basis of the electromagnetic zero-point field in quantum physics and its representation in stochastic electrodynamics. Two approaches have led to the proposal that the inertia of matter may be explained as an electromagnetic reaction force. The first is based on the modeling of quarks and electrons as Planck oscillators and the method of Einstein and Hopf to treat the interaction of the zero-point field with such oscillators. The second approach is based on analysis of the Poynting vector of the zero-point field in accelerated reference frames. It is possible to derive both Newton's equation of motion, F=ma, and its relativistic co-variant form from Maxwell's equations as applied to the zero-point field of the quantum vacuum. This appears to account, at least in part, for the inertia of matter.Comment: 8 pages, no fig

    Thermal nature of de Sitter spacetime and spontaneous excitation of atoms

    Full text link
    We consider, in de Sitter spacetime, both freely falling and static two-level atoms in interaction with a conformally coupled massless scalar field in the de Sitter-invariant vacuum, and separately calculate the contributions of vacuum fluctuations and radiation reaction to the atom's spontaneous excitation rate. We find that spontaneous excitations occur even for the freely falling atom as if there is a thermal bath of radiation at the Gibbons-Hawking temperature and we thus recover, in a different physical context, the results of Gibbons and Hawking that reveals the thermal nature of de Sitter spacetime. Similarly, for the case of the static atom, our results show that the atom also perceives a thermal bath which now arises as a result of the intrinsic thermal nature of de Sitter spacetime and the Unruh effect associated with the inherent acceleration of the atom.Comment: 11 page

    A new "polarized version" of the Casimir Effect is measurable

    Get PDF
    We argue that the exactly computable, angle dependent, Casimir force between parallel plates with different directions of conductivity can be measured.Comment: One Figure, 11 page

    Influence of radiative damping on the optical-frequency susceptibility

    Full text link
    Motivated by recent discussions concerning the manner in which damping appears in the electric polarizability, we show that (a) there is a dependence of the nonresonant contribution on the damping and that (b) the damping enters according to the "opposite sign prescription." We also discuss the related question of how the damping rates in the polarizability are related to energy-level decay rates

    Advances in the proposed electromagnetic zero-point field theory of inertia

    Get PDF
    A NASA-funded research effort has been underway at the Lockheed Martin Advanced Technology Center in Palo Alto and at California State University in Long Beach to develop and test a recently published theory that Newton's equation of motion can be derived from Maxwell's equations of electrodynamics as applied to the zero-point field (ZPF) of the quantum vacuum. In this ZPF-inertia theory, mass is postulated to be not an intrinsic property of matter but rather a kind of electromagnetic drag force that proves to be acceleration dependent by virtue of the spectral characteristics of the ZPF. The theory proposes that interactions between the ZPF and matter take place at the level of quarks and electrons, hence would account for the mass of a composite neutral particle such as the neutron. An effort to generalize the exploratory study of Haisch, Rueda and Puthoff (1994) into a proper relativistic formulation has been successful. Moreover the principle of equivalence implies that in this view gravitation would also be electromagnetic in origin along the lines proposed by Sakharov (1968). With regard to exotic propulsion we can definitively rule out one speculatively hypothesized mechanism: matter possessing negative inertial mass, a concept originated by Bondi (1957) is shown to be logically impossible. On the other hand, the linked ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of manipulation of inertia and gravitation, since both are postulated to be electromagnetic phenomena. It is hoped that this will someday translate into actual technological potential. A key question is whether the proposed ZPF-matter interactions generating the phenomenon of mass might involve one or more resonances. This is presently under investigation.Comment: Revised version of invited presentation at 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 13-15, 1998, Cleveland, OH, 10 pages, no figure

    Photon Production From The Scattering of Axions Out of a Solenoidal Magnetic Field

    Full text link
    We calculate the total cross section for the production of photons from the scattering of axions by a strong inhomogeneous magnetic field in the form of a 2D delta-function, a cylindrical step function and a 2D Gaussian distribution, which can be approximately produced by a solenoidal current. The theoretical result is used to estimate the axion-photon conversion probability which could be expected in a reasonable experimental situation. The calculated conversion probabilities for QCD inspired axions are bigger by a factor of 2.67 (for the cylindrical step function case) than those derived by applying the celebrated 1D calculation of the (inverse) coherent Primakoff effect. We also consider scattering at a resonance EaxionmaxionE_{axion} \sim m_{axion}, which corresponds to the scattering from a delta-function and gives the most enhanced results. Finally, we analyze the results of this work in the astrophysical extension to suggest a way in which they may be directed to a solution to some basic solar physics problems and, in particular, the coronal heating problem.Comment: 19 pages, 1 figure, added analysis of our results in the astrophysical extensio

    Spontaneous emission between an unusual pair of plates

    Full text link
    We compute the modification in the spontaneous emission rate for a two-level atom when it is located between two parallel plates of different nature: a perfectly conducting plate (ϵ)(\epsilon\to \infty) and an infinitely permeable one (μ)(\mu\to \infty). We also discuss the case of two infinitely permeable plates. We compare our results with those found in the literature for the case of two perfectly conducting plates.Comment: latex file 4 pages, 4 figure

    Reply to "Comment on "Some implications of the quantum nature of laser fields for quantum computations''''

    Get PDF
    In this revised reply to quant-ph/0211165, I address the question of the validity of my results in greater detail, by comparing my predictions to those of the Silberfarb-Deutsch model, and I deal at greater length with the beam area paradox. As before, I conclude that my previous results are an (order-of-magnitude) accurate estimate of the error probability introduced in quantum logical operations by the quantum nature of the laser field. While this error will typically (for a paraxial beam) be smaller than the total error due to spontaneous emission, a unified treatment of both effects reveals that they lead to formally similar constraints on the minimum number of photons per pulse required to perform an operation with a given accuracy; these constraints agree with those I have derived elsewhere.Comment: A reply to quant-ph/0211165. Added more calculations and discussion, removed some flippanc

    Pulsed light beams in vacuum with superluminal and negative group velocities

    Get PDF
    Gouy's phase of transversally limited pulses can create a strong anomalous dispersion in vacuum leading to highly superluminal and negative group velocities. As a consequence, a focusing pulse can diverge beyond the focus before converging into it. A simple experiment is proposed.Comment: 4 pages, 5 figure

    Effective Hamiltonian Theory and Its Applications in Quantum Information

    Full text link
    This paper presents a useful compact formula for deriving an effective Hamiltonian describing the time-averaged dynamics of detuned quantum systems. The formalism also works for ensemble-averaged dynamics of stochastic systems. To illustrate the technique we give examples involving Raman processes, Bloch-Siegert shifts and Quantum Logic Gates.Comment: 5 pages, 3 figures, to be published in Canadian Journal of Physic
    corecore