A brief overview is presented of the basis of the electromagnetic zero-point
field in quantum physics and its representation in stochastic electrodynamics.
Two approaches have led to the proposal that the inertia of matter may be
explained as an electromagnetic reaction force. The first is based on the
modeling of quarks and electrons as Planck oscillators and the method of
Einstein and Hopf to treat the interaction of the zero-point field with such
oscillators. The second approach is based on analysis of the Poynting vector of
the zero-point field in accelerated reference frames. It is possible to derive
both Newton's equation of motion, F=ma, and its relativistic co-variant form
from Maxwell's equations as applied to the zero-point field of the quantum
vacuum. This appears to account, at least in part, for the inertia of matter.Comment: 8 pages, no fig