2 research outputs found

    Recent trends in whole cell and isolated enzymes in enantioselective synthesis

    Get PDF
    Modern synthetic organic chemistry has experienced an enormous growth in biocatalytic methodologies; enzymatic transformations and whole cell bioconversions have become generally accepted synthetic tools for asymmetric synthesis. This review details an overview of the latest achievements in biocatalytic methodologies for the synthesis of enantiopure compounds with a particular focus on chemoenzymatic synthesis in non-aqueous media, immobilisation technology and dynamic kinetic resolution. Furthermore, recent advances in ketoreductase technology and their applications are also presented

    Dynamic kinetic resolution of 2-methyl-2-nitrocyclohexanol: Combining the intramolecular nitroaldol (Henry) reaction & lipase catalysed resolution

    Get PDF
    Efforts to combine the intramolecular nitroaldol reaction with lipase-catalysed resolution of the resulting nitroaldol adduct in a one-pot dynamic kinetic resolution (DKR) are described. Significant challenges were encountered in the combination of the two systems. trans-2-Methyl-2-nitrocyclohexyl acetate (±)-3b was isolated in excellent enantiopurity (>98% ee) via a sequential DKR sequence where the lipase-mediated resolution and base-mediated interconversion of 2-methyl-2-nitrocyclohexanol 2 were effected alternately, demonstrating the feasibility of this approach initially. Further work showed, for the first time, evidence that a DKR-type system is possible for 2. Reaction engineering allowed the design of a sequential one-pot reaction system which furnished the products with excellent enantioselectivity, and good diastereoselectivity
    corecore