50 research outputs found
A new approach to mathematical modeling of host-parasite systems
AbstractWe propose a new approach to mathematical modeling of host-parasite systems by using partial differential equations where the degree of parasitism in a host is represented by a continuous variable p. This contrasts with the standard approach found in the literature of using a countable number of ordinary differential equations, one for each nonnegative integer, corresponding to the class of hosts having exactly that number of parasites. The new model bears some similarity with size-structured models of population dynamics. We specialize the model to a specific pair of helminth macroparasites infecting sea bass. We show that the model is well posed and we study its asymptotic behavior. Finally, we present results from some simulations
A numerical method for nonlinear age-structured population models with finite maximum age
AbstractWe propose a new numerical method for the approximation of solutions to a non-autonomous form of the classical Gurtin–MacCamy population model with a mortality rate that is the sum of an intrinsic age-dependent rate that becomes unbounded as the age approaches its maximum value, plus a non-local, non-autonomous, bounded rate that depends on some weighted population size. We prove that our new quadrature based method converges to second-order and we show the results of several numerical simulations
The present and future of QCD
This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades
The present and future of QCD
This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades
Could changes in national tuberculosis vaccination policies be ill-informed ?
National policies regarding the BCG vaccine for tuberculosis vary greatly throughout the international community and several countries are currently considering discontinuing universal vaccination. Detractors of BCG point to its uncertain effectiveness and its interference with the detection and treatment of latent tuberculosis infection (LTBI).
In order to quantify the trade-off between vaccination and treatment of LTBI, a mathematical model was designed and calibrated to data from Brazil, Ghana, Germany, India, Mexico, Romania, the United Kingdom and the United States. Country-specific thresholds for when LTBI treatment outperforms mass vaccination were found and the consequences of policy changes were estimated.
Our results suggest that vaccination outperforms LTBI treatment in all settings but with greatly reduced efficiency in low incidence countries. While national policy statements emphasize BCG’s interference with LTBI detection, we find that reinfection should be more determinant of a country’s proper policy choice
Recommended from our members
Health impacts of perchlorate and pesticide exposure: Protocol for community-engaged research to evaluate environmental toxicants in a US border community
Background: The Northern Arizona University (NAU) Center for Health Equity Research (CHER) is conducting community-engaged health research involving “environmental scans” in Yuma County in collaboration with community health stakeholders, including the Yuma Regional Medical Center (YRMC), Regional Center for Border Health, Inc. (RCBH), Campesinos Sin Fronteras (CSF), Yuma County Public Health District, and government agencies and nongovernmental organizations (NGOs) working on border health issues. The purpose of these efforts is to address community-generated environmental health hazards identified through ongoing coalitions among NAU, and local health care and research institutions. Objective: We are undertaking joint community/university efforts to examine human exposures to perchlorate and agricultural pesticides. This project also includes the parallel development of a new animal model for investigating the mechanisms of toxicity following a “one health” approach. The ultimate goal of this community-engaged effort is to develop interventions to reduce exposures and health impacts of contaminants in Yuma populations. Methods: All participants completed the informed consent process, which included information on the purpose of the study, a request for access to health histories and medical records, and interviews. The interview included questions related to (1) demographics, (2) social determinants of health, (3) health screening, (4) occupational and environmental exposures to perchlorate and pesticides, and (5) access to health services. Each participant provided a hair sample for quantifying the metals used in pesticides, urine sample for perchlorate quantification, and blood sample for endocrine assays. Modeling will examine the relationships between the concentrations of contaminants and hormones, demographics and social determinants of health, and health status of the study population, including health markers known to be impacted by perchlorate and pesticides. Results: We recruited 323 adults residing in Yuma County during a 1-year pilot/feasibility study. Among these, 147 residents were patients from either YRMC or RCBH with a primary diagnosis of thyroid disease, including hyperthyroidism, hypothyroidism, thyroid cancer, or goiter. The remaining 176 participants were from the general population but with no history of thyroid disorder. The pilot study confirmed the feasibility of using the identified community-engaged protocol to recruit, consent, and collect data from a difficult-to-access, vulnerable population. The demographics of the pilot study population and positive feedback on the success of the community-engaged approach indicate that the project can be scaled up to a broader study with replicable population health findings. Conclusions: Using a community-engaged approach, the research protocol provided substantial evidence regarding the effectiveness of designing and implementing culturally relevant recruitment and dissemination processes that combine laboratory findings and public health information. Future findings will elucidate the mechanisms of toxicity and the population health effects of the contaminants of concern, as well as provide a new animal model to develop precision medicine capabilities for the population. International Registered Report Identifier (IRRID): DERR1-10.2196/15864. ©Robert Trotter II, Julie Baldwin, Charles Loren Buck, Mark Remiker, Amanda Aguirre, Trudie Milner, Emma Torres, Frank Arthur von Hippel.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]