4,317 research outputs found

    Dual-mode operation of a neutron source, a concept

    Get PDF
    Pulsed neutron source operates in conjunction with a photomultiplier tube coupled to a gamma ray scintillation crystal. This allows measurements of gamma radiation from both inelastic scattering and thermal neutron capture in a single experiment

    Neutron die-away experiment for lunar and planetary surface analysis Final report, 26 Jul. 1966 - 26 Mar. 1967

    Get PDF
    Neutron and gamma ray die-away experiment for lunar and planetary surface analysi

    Positronium S state spectrum: analytic results at O(m alpha^6)

    Full text link
    We present an analytic calculation of the O(m alpha^6) recoil and radiative recoil corrections to energy levels of positronium nS states and their hyperfine splitting. A complete analytic formula valid to O(m alpha^6) is given for the spectrum of S states. Technical aspects of the calculation are discussed in detail. Theoretical predictions are given for various energy intervals and compared with experimental results.Comment: 29 pages, revte

    The "recoil" correction of order mα6m \alpha^6 to hyperfine splitting of positronium ground state

    Full text link
    The "recoil" correction of order mα6m \alpha^6 to the hyperfine splitting of positronium ground state was found. The formalism employed is based on the noncovariant perturbation theory in QED. Equation for two-particle component of full (many-body) wave function is used, in which effective Hamiltonian depends on the energy of a system. The effective Hamiltonian is not restricted to the nonrelativistic region, so there is no need in any regularization. To evaluate integrals over loop momenta, they are divided into "hard" and "soft" parts, coming from large and small momenta respectively. Soft contributions were found analytically, and hard ones are evaluated by numerical integration. Some soft terms due to the retardation cancel each other. To calculate the "hard" contributions, a great number of noncovariant graphs is replaced by only a few covariant ones. The hard contribution was found in two ways. The first way is to evaluate contributions of separate graphs, using the Coulomb gauge. The second one is to calculate full hard contribution as a whole using the Feynman gauge. The final result for the "recoil" correction is 0.381(6) m\al^6 and agrees with those of previous papers. Diagram-to-diagram comparison with the revised results of Adkins&Sapirstein was done. All the results agree, so the "recoil" correction is now firmly established. This means a considerable disagreement with the experimental data.Comment: 28 pages, latex including latex figure

    Resistivity peak values at transition between fractional quantum Hall states

    Full text link
    Experimental data available in the literature for peak values of the diagonal resistivity in the transitions between fractional quantum Hall states are compared with the theoretical predictions. It is found that the majority of the peak values are close to the theoretical values for two-dimensional systems with moderate mobilities.Comment: 3 pages, 1 figur

    The metallic resistance of a dilute two-dimensional hole gas in a GaAs quantum well: two-phase separation at finite temperature?

    Full text link
    We have studied the magnetotransport properties of a high mobility two-dimensional hole gas (2DHG) system in a 10nm GaAs quantum well (QW) with densities in range of 0.7-1.6*10^10 cm^-2 on the metallic side of the zero-field 'metal-insulator transition' (MIT). In a parallel field well above B_c that suppresses the metallic conductivity, the 2DHG exhibits a conductivity g(T)~0.3(e^2/h)lnT reminiscent of weak localization. The experiments are consistent with the coexistence of two phases in our system: a metallic phase and a weakly insulating Fermi liquid phase having a percolation threshold close to B_c

    Complete Result for Positronium Energy Levels at Order alpha^6 m

    Full text link
    We have completed theoretical predictions for positronium energy levels through order alpha^6 m by the calculation of the spin independent, radiative recoil correction. This contribution is significant and amounts to 10.64 MHz for the 1S state. We further perform detailed comparison of theoretical predictions to experimental results for 1S-2S and 2S-2P transitions.Comment: 9 pages, 2 tables. Email: [email protected]

    Spin-orbit interaction and the 'metal-insulator' transition observed in two-dimensional hole systems

    Full text link
    We present calculations of the spin and phase relaxation rates in GaAs/AlGaAs pp-type quantum wells. These rates are used to derive the temperature dependence of the weak-localization correction to the conductivity. In pp-type quantum wells both weak localization and weak anti-localization are present due to the strong spin-orbit interaction. When determining the total conductivity correction one also have to include the term due to hole-hole interaction. The magnitude of the latter depends on the ratio between the thermal energy and the Fermi energy, kBT/EFk_{\rm B}T/E_{\rm F} and whether the system can be considered as ballistic (kBTĎ„tr/â„Ź>1)(k_{\rm B}T \tau_{\rm tr} / \hbar>1) or diffusive (kBTĎ„tr/â„Ź<1k_{\rm B}T \tau_{\rm tr}/\hbar<1). We argue that due to the relatively low Fermi energy and the moderate mobilities, in the pp-type systems in question, the conductivity correction arising from hole-hole interactions is negligible at the highest temperatures accessible in the experiments. Hence the 'metal-insulator' transition observed at these relatively high temperatures could be caused by interference effects. We compare our calculations of the weak anti-localization correction with the experimental results from different independent groups with special emphasis on the experiments by Simmons et al. We find good agreement between predicted and observed transistion density pcp_{c}.Comment: 6 pages, 4 figures. Accepted to PRB (15 June, 2002

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure
    • …
    corecore