793 research outputs found

    On the optical conductivity of Electron-Doped Cuprates I: Mott Physics

    Full text link
    The doping and temperature dependent conductivity of electron-doped cuprates is analysed. The variation of kinetic energy with doping is shown to imply that the materials are approximately as strongly correlated as the hole-doped materials. The optical spectrum is fit to a quasiparticle scattering model; while the model fits the optical data well, gross inconsistencies with photoemission data are found, implying the presence of a large, strongly doping dependent Landau parameter

    On the Fermi Liquid to Polaron Crossover II: Double Exchange and the Physics of "Colossal" Magnetoresistance

    Full text link
    We use the dynamical mean field method to study a model of electrons Jahn-Teller coupled to localized classical oscillators and ferromagnetically coupled to ``core spins'', which, we argue, contains the essential physics of the ``colossal magnetoresistance'' manganites Re1−xAxMnO3Re_{1-x} A_x MnO_3. We determine the different regimes of the model and present results for the temperature and frequency dependence of the conductivity, the electron spectral function and the root mean square lattice parameter fluctuations. We compare our results to data, and give a qualitative discussion of important physics not included in the calculation. Extensive use is made of results from a companion paper titled: ``On the Fermi Liquid to Polaron Crossover I: General Results''.Comment: 34 pages, 10 figures. Depends on previous paper titled "On the Fermi Liquid to Poalron Crossover I: General Result

    Dissipative dynamics of an extended magnetic nanostructure: Spin necklace in a metallic environment

    Full text link
    We study theoretically the dynamics of an ``xxz'' spin necklace coupled to a conduction electron sea, a model system for a nanostructure in a dissipative environment. We extract the long-time behavior via a mapping to a multichannel Coulomb gas problem followed by a scaling analysis. The strong quantum fluctuations of the necklace cause a nontrivial dependence of couplings on system size which we extract via an analysis involving the ``boundary condition changing operator'', and confirm via a detailed numerical evaluation of one case.Comment: 4 pages, 4 figure

    Quantum-Critical Behavior in a Two-Layer Antiferromagnet

    Full text link
    We analyze quantum Monte Carlo data in the vicinity of the quantum transition between a Neel state and a quantum paramagnet in a two-layer, square lattice spin 1/2 Heisenberg antiferromagnet. The real-space correlation function and the universal amplitude ratio of the structure factor and the dynamic susceptibility show clear evidence of quantum critical behavior at low temperatures. The numerical results are in good quantitative agreement with 1/N1/N calculations for the O(N)O(N) non-linear sigma model. A discrepancy, reported earlier, between the critical properties of the antiferromagnet and the sigma model is resolved. We also discuss the values of prefactors of the dynamic susceptibility and the structure factor in a single layer antiferromagnet at low TT.Comment: 11 pages, REVtex file, 5 figures in a uuencoded, gziped file. One citation added

    Electrical resistivity ofYb(Rh1-xCox)2Si2 single crystals at low temperatures

    Full text link
    We report low-temperature measurements of the electrical resistivity of Yb(Rh1-xCox)2Si2 single crystals with 0 <= x <= 0.12. The isoelectronic substitution of Co on the Rh site leads to a decrease of the unit cell volume which stabilizes the antiferromagnetism. Consequently, the antiferromagnetic transition temperature increases upon Co substitution. For x = 0.07 Co content a subsequent low-temperature transition is observed in agreement with susceptibility measurements and results on YbRh2Si2 under hydrostatic pressure. Above the Neel transition the resistivity follows a non-Fermi liquid behavior similar to that of YbRh2Si2.Comment: 4 pages, submitted to SCES0

    Dynamical Mean-Field Solution for a Model of Metal-Insulator Transitions in Moderately Doped Manganites

    Get PDF
    We propose that a specific spatial configuration of lattice sites that energetically favor {\it 3+} or {\it 4+} Mn ions in moderately doped manganites constitutes approximately a spatially random two-energy-level system. Such an effect results in a mechanism of metal-insulator transitions that appears to be different from both the Anderson transition and the Mott-Hubbard transition. Correspondingly, a disordered Kondo lattice model is put forward, whose dynamical mean-field solution agrees reasonably with experiments.Comment: 4 pages, 2 eps figures, Revtex. First submitted to PRL on May 16, 199

    Effects of uniaxial strain in LaMnO_3

    Full text link
    The effects of uniaxial strain on the structural, orbital, optical, and magnetic properties of LaMnO_3 are calculated using a general elastic energy expression, along with a tight-binding parameterization of the band theory. Tensile uniaxial strain of the order of 2 % (i.e., of the order of magnitude of those induced in thin films by lattice mismatch with substrates) is found to lead to changes in the magnetic ground state, leading to dramatic changes in the band structure and optical conductivity spectrum. The magnetostriction effect associated with the Neel transition of bulk(unstrained) LaMnO_3 is also determined. Due to the Jahn-Teller coupling, the uniform tetragonal distortion mode is softer in LaMnO_3 than in doped cubic manganates. Reasons why the observed (\pi \pi 0) orbital ordering is favored over a (\pi \pi \pi) periodicity are discussed.Comment: 9 figures, submitted in Phys. Rev.

    On the Fermi Liquid to Polaron Crossover I: General Results

    Full text link
    We use analytic techniques and the dynamical mean field method to study the crossover from fermi liquid to polaron behavior in models of electrons interacting with dispersionless classical phonons.Comment: 42 pages, 13 figure

    Electrodynamics of the vanadium oxides VO2 and V2O3

    Full text link
    The optical/infrared properties of films of vanadium dioxide (VO2) and vanadium sesquioxide (V2O3) have been investigated via ellipsometry and near-normal incidence reflectance measurements from far infrared to ultraviolet frequencies. Significant changes occur in the optical conductivity of both VO2 and V2O3 across the metal-insulator transitions at least up to (and possibly beyond) 6 eV. We argue that such changes in optical conductivity and electronic spectral weight over a broad frequency range is evidence of the important role of electronic correlations to the metal-insulator transitions in both of these vanadium oxides. We observe a sharp optical transition with possible final state (exciton) effects in the insulating phase of VO2. This sharp optical transition occurs between narrow a1g bands that arise from the quasi-one-dimensional chains of vanadium dimers. Electronic correlations in the metallic phases of both VO2 and V2O3 lead to reduction of the kinetic energy of the charge carriers compared to band theory values, with paramagnetic metallic V2O3 showing evidence of stronger correlations compared to rutile metallic VO2.Comment: 11 pages, 7 figure
    • …
    corecore