355 research outputs found
Various series expansions for the bilayer S=1/2 Heisenberg antiferromagnet
Various series expansions have been developed for the two-layer, S=1/2,
square lattice Heisenberg antiferromagnet. High temperature expansions are used
to calculate the temperature dependence of the susceptibility and specific
heat. At T=0, Ising expansions are used to study the properties of the
N\'{e}el-ordered phase, while dimer expansions are used to calculate the
ground-state properties and excitation spectra of the magnetically disordered
phase. The antiferromagnetic order-disorder transition point is determined to
be . Quantities computed include the staggered
magnetization, the susceptibility, the triplet spin-wave excitation spectra,
the spin-wave velocity, and the spin-wave stiffness. We also estimates that the
ratio of the intra- and inter-layer exchange constants to be for cuprate superconductor .Comment: RevTeX, 9 figure
Monte Carlo Simulations for the Magnetic Phase Diagram of the Double Exchange Hamiltonian
We have used Monte Carlo simulation techniques to obtain the magnetic phase
diagram of the double exchange Hamiltonian. We have found that the Berry's
phase of the hopping amplitude has a negligible effect in the value of the
magnetic critical temperature. To avoid finite size problems in our simulations
we have also developed an approximated expression for the double exchange
energy. This allows us to obtain the critical temperature for the ferromagnetic
to paramagnetic transition more accurately. In our calculations we do not
observe any strange behavior in the kinetic energy, chemical potential or
electron density of states near the magnetic critical temperature. Therefore,
we conclude that other effects, not included in the double exchange
Hamiltonian, are needed to understand the metal-insulator transition which
occurs in the manganites.Comment: 6 pages Revtex, 8 PS figure
Towards a Classification of the Effects of Disorder on Materials Properties
Many 'interesting; correlated electron materials exhibit an unusual
sensitivity of measured properties to external perturbations, and in particular
to imperfections in the sample being measured. It is argued that in addition to
its inconvenience, this sensitivity may indicated potentially useful
properties. A partial classification of causes of such sensitivity is given.Comment: Solid State Communications, in press (Proceedings of the June 2002
Williamsburg conference on Muon Spin Rotation
Landau theory of phase separation in cuprates
I discuss the problem of phase separation in cuprates from the point of view
of the Landau theory of Fermi liquids. I calculate the rate of growth of
unstable regions for the hydrodymanics and collisionless limit and, in presence
of long range Coulomb interactions, the size of these regions. These are
analytic results valid for any strength of the Landau parameters.Comment: RevteX, preprint ITP (1994
Conductance as a Function of the Temperature in the Double Exchange Model
We have used the Kubo formula to calculate the temperature dependence of the
electrical conductance of the double exchange Hamiltonian. We average the
conductance over an statistical ensemble of clusters, which are obtained by
performing Monte Carlo simulations on the classical spin orientation of the
double exchange Hamiltonian. We find that for electron concentrations bigger
than 0.1, the system is metallic at all temperatures. In particular it is not
observed any change in the temperature dependence of the resistivity near the
magnetical critical temperature. The calculated resistivity near is
around ten times smaller than the experimental value. We conclude that the
double exchange model is not able to explain the metal to insulator transition
which experimentally occurs at temperatures near the magnetic critical
temperature.Comment: 6 pages, 5 figures included in the tex
T=0 Phase Diagram of the Double-Exchange Model
We present the T=0 phase diagram of the double-exchange model (ferromagnetic
Kondo lattice model) for all values of the carrier concentration and Hund's
couplng , within dynamical mean field theory. We find that depending on the
values of and , the ground state is either a ferromagnet, a commensurate
antiferromagnet or some other incommensurate phase with intermediate wave
vectors . The antiferromagnetic phase is separated by first order phase
boundaries and wide regimes of phase separation. The transition from the
ferromagnetic phase to an incommensurate phase is second order.Comment: 4 pages, 5 figures. The analysis now includes incommensurate phases
with arbitrary wave vectors. Correspondingly, the figures have been change
Dynamical mean field theory for transition temperature and optics of CMR manganites
A tight binding parametrization of local spin density functional band theory
is combined with a dynamical mean field treatment of correlations to obtain a
theory of the magnetic transition temperature, optical conductivity and T=0
spinwave stiffness of a minimal model for the pseudocubic metallic
manganites such a . The results indicate that previous
estimates of obtained by one of us (Phys. Rev. \textbf{B61} 10738-49
(2000)) are in error, that in fact the materials are characterized by Hunds
coupling , and that magnetic-order driven changes in the
kinetic energy may not be the cause of the observed 'colossal' magnetoresistive
and multiphase behavior in the manganites, raising questions about our present
understanding of these materials.Comment: Published version; 10 pages, 9 figure
Temperature Dependence of Low-Lying Electronic Excitations of LaMnO_3
We report on the optical properties of undoped single crystal LaMnO_3, the
parent compound of the colossal magneto-resistive manganites. Near-Normal
incidence reflectance measurements are reported in the frequency range of
20-50,000 cm-1 and in the temperature range 10-300 K. The optical conductivity,
s_1(w), is derived by performing a Kramers-Kronig analysis of the reflectance
data. The far-infrared spectrum of s_1(w) displays the infrared active optical
phonons. We observe a shift of several of the phonon to high frequencies as the
temperature is lowered through the Neel temperature of the sample (T_N = 137
K). The high-frequency s_1(w) is characterized by the onset of absorption near
1.5 eV. This energy has been identified as the threshold for optical
transitions across the Jahn-Teller split e_g levels. The spectral weight of
this feature increases in the low-temperature state. This implies a transfer of
spectral weight from the UV to the visible associated with the paramagnetic to
antiferromagnetic state. We discuss the results in terms of the double exchange
processes that affect the optical processes in this magnetic material.Comment: 7 pages, 5 figure
Polaronic Signatures in Mid-Infrared Spectra: Prediction for LaMnO3 and CaMnO3
Hole-doped LaMnO3 and electron-doped CaMnO3 form self-trapped electronic
states. The spectra of these states have been calculated using a two orbital
(Mn eg Jahn-Teller) model, from which the non-adiabatic optical conductivity
spectra are obtained. In both cases the optical spectrum contains weight in the
gap region, whose observation will indicate the self-trapped nature of the
carrier states. The predicted spectra are proportional to the concentration of
the doped carriers in the dilute regime, with coefficients calculated with no
further model parameters.Comment: 6 pages with 3 figures imbedde
Semiclassical approach to calculating the influence of local lattice fluctuations on electronic properties of metals
We propose a new semiclassical approach based on the dynamical mean field
theory to treat the interactions of electrons with local lattice fluctuations.
In this approach the classical (static) phonon modes are treated exactly
whereas the quantum (dynamical) modes are expanded to second order and give
rise to an effective semiclassical potential. We determine the limits of
validity of the approximation, and demonstrate its usefulness by calculating
the temperature dependent resistivity in the Fermi liquid to polaron crossover
regime (leading to `saturation behavior') and also isotope effects on
electronic properties including the spectral function, resistivity, and optical
conductivity, problems beyond the scope of conventional diagrammatic
perturbation theories.Comment: 11 pages, 7 figure
- …