8 research outputs found

    microRNA regulatory circuits in a mouse model of inherited retinal degeneration.

    No full text
    miRNA dysregulation is a hallmark of many neurodegenerative disorders, including those involving the retina. Up-regulation of miR-1/133 and miR-142, and down-regulation of miR-183/96/182 has been described in the RHO-P347S mouse retina, a model for a common form of inherited blindness. High-throughput LC-MS/MS was employed to analyse the protein expression of predicted targets for these miRNAs in RHO-P347S mouse retinas; 133 potential target genes were identified. Pathway over-representation analysis suggests G-protein signaling/visual transduction, and synaptic transmission for miR-1, and transmembrane transport, cell-adhesion, signal transduction and apoptosis for miR-183/96/182 as regulated functions in retina. Validation of miRNA-target mRNA interactions for miR-1, miR-96/182 and miR-96 targeting Ctbp2, Rac1 and Slc6a9, respectively, was demonstrated in vitro. In vivo interaction of miR-183/96/182 and Rac1 mRNA in retina was confirmed using miR-CATCH. Additional miRNAs (including miR-103-3p, miR-9-5p) were both predicted to target Rac1 mRNA and enriched by Rac1-miR-CATCH. Other Rac1-miR-CATCH-enriched miRNAs (including miR-125a/b-5p, miR-378a-3p) were not predicted to target Rac1. Furthermore, levels of ~25% of the retinal Rac1 interactors were determined by LC-MS/MS; expression of Rap1gds1 and Cav1 was elevated. Our data suggest significant utilisation of miRNA-based regulation in retina. Possibly more than 30 miRNAs interact with Rac1 in retina, targeting both UTRs and coding regions

    Cytostatica and small intestine

    No full text

    Basic anatomical and physiological data for use in radiological protection: reference values

    No full text
    corecore