90 research outputs found

    Medical treatment of pediatric urolithiasis

    Get PDF
    In recent years the incidence of pediatric stone disease has increased several fold, mostly due to hypercalciuria and hypocitraturia. The goal of medical treatment is to protect the patient from formation of new stones and expansion of existing ones. The non-pharmacological means to address stone disease include high fluid intake and, frequently, modification of nutritional habits. The pharmacological treatment is based on the chemical composition of the stone and the biochemical abnormalities causing its formation; hence, chemical analysis of the stone, urine and blood is of paramount importance and should be done when the first stone is detected. This review discusses the current options of medical treatment of pediatric urolithiasis

    What parathyroid hormone levels should we aim for in children with stage 5 chronic kidney disease; what is the evidence?

    Get PDF
    The bone disease that occurs as a result of chronic kidney disease (CKD) is not only debilitating but also linked to poor growth and cardiovascular disease. It is suspected that abnormal bone turnover is the main culprit for these poor outcomes. Plasma parathyroid hormone (PTH) levels are used as a surrogate marker of bone turnover, and there is a small number of studies in children that have attempted to identify the range of PTH levels that correlates with normal bone histology. It is clear that high PTH levels are associated with high bone turnover, although the range is wide. However, the ability of PTH levels to distinguish between low and normal bone turnover is less clear. This is an important issue, because current guidelines for calcium and phosphate management are based upon there being an “optimum” range for PTH. This editorial takes a critical look at the evidence upon which these recommendations are based

    Response of different PTH assays to therapy with sevelamer or CaCO3 and active vitamin D sterols

    Get PDF
    Amino-terminally truncated parathyroid hormone (PTH) fragments are detected to differing degrees by first- and second-generation immunometric PTH assays (PTH-IMAs), and acute changes in serum calcium affect the proportion of these fragments in circulation. However, the effect of chronic calcium changes and different vitamin D doses on these PTH measurements remains to be defined. In this study, 60 pediatric dialysis patients, aged 13.9 ± 0.7 years, with secondary hyperparathyroidism were randomized to 8 months of therapy with oral vitamin D combined with either calcium carbonate (CaCO3) or sevelamer. Serum phosphorus levels did not differ between groups. Serum calcium levels rose from 9.3 ± 0.1 to 9.7 ± 0.1 mg/dl during CaCO3 therapy (p < 0.01 from baseline) but remained unchanged during sevelamer therapy. In the CaCO3 and sevelamer groups, baseline serum PTH levels (1st PTH-IMA; Nichols Institute Diagnostics, San Clemente, CA) were 964 ± 75 and 932 ± 89 pg/ml, and levels declined to 491 ± 55 and 543 ± 59 pg/ml, respectively (nonsignificant between groups). Patients treated with sevelamer received higher doses of vitamin D than those treated with CaCO3. The PTH values obtained by first- and second-generation PTH-IMAs correlated closely throughout therapy and the response of PTH was similar to both PTH-IMAs, despite differences in serum calcium levels

    Genetic causes of hypercalciuric nephrolithiasis

    Get PDF
    Renal stone disease (nephrolithiasis) affects 3–5% of the population and is often associated with hypercalciuria. Hypercalciuric nephrolithiasis is a familial disorder in over 35% of patients and may occur as a monogenic disorder that is more likely to manifest itself in childhood. Studies of these monogenic forms of hypercalciuric nephrolithiasis in humans, e.g. Bartter syndrome, Dent’s disease, autosomal dominant hypocalcemic hypercalciuria (ADHH), hypercalciuric nephrolithiasis with hypophosphatemia, and familial hypomagnesemia with hypercalciuria have helped to identify a number of transporters, channels and receptors that are involved in regulating the renal tubular reabsorption of calcium. Thus, Bartter syndrome, an autosomal disease, is caused by mutations of the bumetanide-sensitive Na–K–Cl (NKCC2) co-transporter, the renal outer-medullary potassium (ROMK) channel, the voltage-gated chloride channel, CLC-Kb, the CLC-Kb beta subunit, barttin, or the calcium-sensing receptor (CaSR). Dent’s disease, an X-linked disorder characterized by low molecular weight proteinuria, hypercalciuria and nephrolithiasis, is due to mutations of the chloride/proton antiporter 5, CLC-5; ADHH is associated with activating mutations of the CaSR, which is a G-protein-coupled receptor; hypophosphatemic hypercalciuric nephrolithiasis associated with rickets is due to mutations in the type 2c sodium–phosphate co-transporter (NPT2c); and familial hypomagnesemia with hypercalciuria is due to mutations of paracellin-1, which is a member of the claudin family of membrane proteins that form the intercellular tight junction barrier in a variety of epithelia. These studies have provided valuable insights into the renal tubular pathways that regulate calcium reabsorption and predispose to hypercalciuria and nephrolithiasis

    History, epidemiology and regional diversities of urolithiasis

    Get PDF
    Archeological findings give profound evidence that humans have suffered from kidney and bladder stones for centuries. Bladder stones were more prevalent during older ages, but kidney stones became more prevalent during the past 100 years, at least in the more developed countries. Also, treatment options and conservative measures, as well as ‘surgical’ interventions have also been known for a long time. Our current preventive measures are definitively comparable to those of our predecessors. Stone removal, first lithotomy for bladder stones, followed by transurethral methods, was definitively painful and had severe side effects. Then, as now, the incidence of urolithiasis in a given population was dependent on the geographic area, racial distribution, socio-economic status and dietary habits. Changes in the latter factors during the past decades have affected the incidence and also the site and chemical composition of calculi, with calcium oxalate stones being now the most prevalent. Major differences in frequency of other constituents, particularly uric acid and struvite, reflect eating habits and infection risk factors specific to certain populations. Extensive epidemiological observations have emphasized the importance of nutritional factors in the pathogenesis of urolithiasis, and specific dietary advice is, nowadays, often the most appropriate for prevention and treatment of urolithiasis

    CKD-MBD after kidney transplantation

    Get PDF
    Successful kidney transplantation corrects many of the metabolic abnormalities associated with chronic kidney disease (CKD); however, skeletal and cardiovascular morbidity remain prevalent in pediatric kidney transplant recipients and current recommendations from the Kidney Disease Improving Global Outcomes (KDIGO) working group suggest that bone disease—including turnover, mineralization, volume, linear growth, and strength—as well as cardiovascular disease be evaluated in all patients with CKD. Although few studies have examined bone histology after renal transplantation, current data suggest that bone turnover and mineralization are altered in the majority of patients and that biochemical parameters are poor predictors of bone histology in this population. Dual energy X-ray absorptiometry (DXA) scanning, although widely performed, has significant limitations in the pediatric transplant population and values have not been shown to correlate with fracture risk; thus, DXA is not recommended as a tool for the assessment of bone density. Newer imaging techniques, including computed tomography (quantitative CT (QCT), peripheral QCT (pQCT), high resolution pQCT (HR-pQCT) and magnetic resonance imaging (MRI)), which provide volumetric assessments of bone density and are able to discriminate bone microarchitecture, show promise in the assessment of bone strength; however, future studies are needed to define the value of these techniques in the diagnosis and treatment of renal osteodystrophy in pediatric renal transplant recipients
    corecore