3 research outputs found

    New multicellular marine macroalgae from the early Tonian of northwestern Canada

    Get PDF
    Molecular phylogenetic data suggest that photosynthetic eukaryotes first evolved in freshwater environments in the early Proterozoic and diversified into marine environments by the Tonian Period, but early algal evolution is poorly reflected in the fossil record. Here, we report newly discovered, millimeter- to centimeter-scale macrofossils from outershelf marine facies of the ca. 950–900 Ma (Re-Os minimum age constraint = 898 ± 68 Ma) Dolores Creek Formation in the Wernecke Mountains, northwestern Canada. These fossils, variably preserved by iron oxides and clay minerals, represent two size classes. The larger forms feature unbranching thalli with uniform cells, differentiated cell walls, longitudinal striations, and probable holdfasts, whereas the smaller specimens display branching but no other diagnostic features. While the smaller population remains unresolved phylogenetically and may represent cyanobacteria, we interpret the larger fossils as multicellular eukaryotic macroalgae with a plausible green algal affinity based on their large size and presence of rib-like wall ornamentation. Considered as such, the latter are among the few green algae and some of the largest macroscopic eukaryotes yet recognized in the early Neoproterozoic. Together with other Tonian fossils, the Dolores Creek fossils indicate that eukaryotic algae, including green algae, colonized marine environments by the early Neoproterozoic Era

    Re-Os geochronology for the Cambrian SPICE event : Insights into euxinia and enhanced continental weathering from radiogenic isotopes

    No full text
    The late Cambrian Steptoean positive carbon isotope excursion (SPICE) represents a major perturbation to the global carbon cycle and was associated with trilobite extinctions and expansion of anoxic and/or euxinic water masses during episodes of eustatic sea-level change. We present a new Re-Os age together with Os and Nd isotope stratigraphy and major and trace-element data from the Alum Shale Formation (Scania, Sweden). The Re-Os age of 494.6 ± 2.9 Ma is from the interval of peak δ13Corg values, providing the first radiometric age constraint for this Cambrian carbon isotope excursion, interpreted as a possible pre-Mesozoic ocean anoxia event, and the timing of biomere-level extinctions. The Os isotope chemostratigraphic profile can be explained by an increase in terrigenous weathering prior to the SPICE, potentially driven by sea-level fall, and in agreement with enhanced nutrient supply, primary productivity, and organic matter burial as the driver of the SPICE event. Post-SPICE, the Os isotopes become increasingly unradiogenic; however, invariant εNd(t) values argue against a change in provenance and instead support a decrease in the continental weathering flux, possibly related to eustatic sea-level rise

    Application of the 187Re-187Os geochronometer to crustal materials: Systematics, methodology, data reporting, and interpretation

    Get PDF
    The rhenium-osmium (187Re-187Os) system is a highly versatile chronometer that is regularly applied to a wide range of geological and extraterrestrial materials. In addition to providing geo- or cosmo-chronological information, the Re-Os system can also be used as a tracer of processes across a range of temporal (millennial to gigayear) and spatial scales (lower mantle to cryosphere). An increasing number of sulfide minerals are now routinely dated, which further expands the ability of this system to refine mineral exploration models as society moves toward a new, green economy with related technological needs. An expanding range of natural materials amenable to Re-Os geochronology brings additional complexities in data interpretation and the resultant translation of measured isotopic ratios to a properly contextualized age. Herein, we provide an overview of the 187Re-187Os system as applied to sedimentary rocks, sulfides, and other crustal materials and highlight further innovations on the horizon. Additionally, we outline next steps and best practices required to improve the precision of the chronometer and establish community-wide data reduction procedures, such as the decay constant, regression technique, and software packages to use. These best practices will expand the utility and viability of published results and essential metadata to ensure that such data conform to evolving standards of being findable, accessible, interoperable, and reusable (FAIR)
    corecore