81 research outputs found

    Effect of reactant gas flow orientation on the current and temperature distribution in self-heating polymer electrolyte fuel cells

    Get PDF
    Fuel cell polarisation performance is typically reported under controlled/constant temperature conditions, as a sign of robust metrology. However, in practice, fuel cells self-heat as they generate current; which varies the temperature across the polarisation curve and affects performance. More detail regarding the internal cell operation can be gleaned by current and temperature distribution mapping. For the case of an unheated cell, ‘self-heating’ increases the cell temperature and improves performance, resulting in a ‘voltage recovery’ and a more homogeneous current and water distribution. For actively heated cells, a reduced current is observed in regions of high temperature and low humidity. The positioning of the gas manifolds also has a decisive impact on performance by affecting the reactant concentration, humidity and water distribution. Counter- and cross-flow orientations in a self-heating cell were studied, with a counter-flow orientation with air flowing with gravity producing the most uniform temperature distribution

    Investigating the effect of thermal gradients on stress in solid oxide fuel cell anodes using combined synchrotron radiation and thermal imaging

    Get PDF
    Thermal gradients can arise within solid oxide fuel cells (SOFCs) due to start-up and shut-down, non-uniform gas distribution, fast cycling and operation under internal reforming conditions. Here, the effects of operationally relevant thermal gradients on Ni/YSZ SOFC anode half cells are investigated using combined synchrotron X-ray diffraction and thermal imaging. The combination of these techniques has identified significant deviation from linear thermal expansion behaviour in a sample exposed to a one dimensional thermal gradient. Stress gradients are identified along isothermal regions due to the presence of a proximate thermal gradient, with tensile stress deviations of up to 75Â MPa being observed across the sample at a constant temperature. Significant strain is also observed due to the presence of thermal gradients when compared to work carried out at isothermal conditions

    Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    Get PDF
    Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando, in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems

    Measurement of water uptake in thin-film Nafion and anion alkaline exchange membranes using the quartz crystal microbalance

    Get PDF
    Water uptake, sorption mechanics and swelling characteristics of thin-film Nafion and a commercially available Tokuyama alkaline anion exchange membrane ionomer from the vapour phase is explored using a quartz crystal microbalance (QCM). The water uptake measures the number of water molecules adsorbed by the ionomer per functional group and is determined in-situ using the QCM frequency responses allowing for comparison with nanogram precision. Crystal admittance spectroscopy, along with equivalent circuit fitting, is applied to both thin films for the first time and is used to investigate the ionomer's viscoelastic changes during hydration; to elucidate the mechanisms at play during low, medium and high relative humidities

    A study of the effect of water management and electrode flooding on the dimensional change of polymer electrolyte fuel cells

    Get PDF
    AbstractWater management and flooding play an important role in the performance and durability of polymer electrolyte fuel cells (PEFCs). In this study, a dynamic electro-mechanical analysis is performed to examine the performance of a working PEFC during hydration transients and flooding events. Cell resistance is measured using electrochemical impedance spectroscopy (EIS), and the stress/strain characteristics – cell compression and membrane electrode assembly (MEA) dimensional change – are studied using a controlled compression unit (CCU).Ex-situ measurements of membrane thickness as a function of hydration level provide a direct correlation between ionic conductivity and thickness. During initial hydration of Nafion membranes there is a direct relationship between membrane conductivity and dimensional change (swelling) of MEAs. Electrode flooding is found to result in membrane hydration and an increase in stress or strain, depending on the compression mode of the fuel cell. Results suggest that hydration cycles and flooding events can lead to cell degradation due to the stresses imposed

    In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    Get PDF
    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features

    Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells

    Get PDF
    This paper describes the use of an in situ analytical technique based on simultaneous displacement and resistance measurement of gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs), when exposed to varying compaction pressure. In terms of the losses within fuel cells, the ohmic loss makes up a significant portion. Of this loss, the contact resistance between the GDL and the bipolar plate (BPP) is an important constituent. By analysing the change in thickness and ohmic resistance of GDLs under compression, important mechanical and electrical properties are obtained. Derived parameters such as the ‘displacement factor’ are used to characterise a representative range of commercial GDLs. Increasing compaction pressure leads to a non-linear decrease in resistance for all GDLs. For Toray paper, compaction becomes more irreversible with pressure with no elastic region observed. Different GDLs have different intrinsic resistance; however, all GDLs of the same class share a common compaction profile (change in resistance with pressure). Cyclic compression of Toray GDL leads to progressive improvement in resistance and reduction in thickness that stabilises after ∼10 cycles

    Current density mapping and optical flow visualisation of a polymer electrolyte membrane water electrolyser

    Get PDF
    A polymer electrolyte membrane water electrolyser (PEMWE) employing a segmented current collector made from a printed circuit board (PCB) with optical access to the channel has been demonstrated for the first time. The cell allows the local current density, flow regime and bubble formation dynamics to be studied in real time. Transition is observed from a flow of discrete bubbles at the start of the channel to long bullet shaped bubbles towards the end of the channel associated with a significant increase in local current density

    4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging

    Get PDF
    Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularly in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisatio

    Alkaline anion exchange membrane degradation as a function of humidity measured using the quartz crystal microbalance

    Get PDF
    The solid polymer electrolyte (SPE) alkaline anion exchange membrane (AAEM) fuel cell exhibits facile oxygen reduction reaction (ORR) kinetics and has the ability to utilise non-precious metal electrocatalysts. However, the AAEM is reported to suffer from increased instability within the alkaline media (degradation) via a number of routes, including nucleophilic elimination when operated at temperatures above 60 °C, somewhat eliminating the kinetic advantage of operating at higher temperatures. Nonetheless, modelling studies have indicated that the membrane hydration could show improved resistance to alkaline instability and subsequent degradation when operated at elevated temperatures. This investigation uses the quartz crystal microbalance (QCM) to examine the thermal stability of a commercial AAEM as a function of humidity. The results show that hydration improves ionomer resistance to degradation, as the ions within the system (namely the OH- nucleophile and cationic headgroups) become less reactive. In-line mass spectrometry data confirms that the ionomer degrades during the elevated temperature excursions used in this study
    • …
    corecore