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Abstract 

The solid polymer electrolyte (SPE) alkaline anion exchange membrane (AAEM) fuel cell 

exhibits facile oxygen reduction reaction (ORR) kinetics and has the ability to utilise non-

precious metal electrocatalysts. However, the AAEM is reported to suffer from increased 

instability within the alkaline media (degradation) via a number of routes, including nucleophilic 

elimination when operated at temperatures above 60C, somewhat eliminating the kinetic 

advantage of operating at higher temperatures. Nonetheless, modelling studies have indicated 

that the membrane hydration could show improved resistance to alkaline instability and 

subsequent degradation when operated at elevated temperatures. This investigation uses the 

quartz crystal microbalance (QCM) to examine the thermal stability of a commercial AAEM as 

a function of humidity. The results show that hydration improves ionomer resistance to 

degradation, as the ions within the system (namely the OH- nucleophile and cationic 

headgroups) become less reactive. In-line mass spectrometry data confirms that the ionomer 

degrades during the elevated temperature excursions used in this study.  
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1  Introduction 

 

Alkaline anion exchange membrane (AAEM) fuel cells have the potential to replace the 

traditional acidic proton exchange membrane (PEM) fuel cells for low temperature 

applications. With more facile oxygen reduction reaction (ORR) kinetics than traditional PEM 

fuel cells, the alkaline medium allows implementation of lower cost, non-precious metal 

electrocatalysts [1, 2], compared to the more resilient precious metals (e.g. Pt) required in 

acidic media [3-5]. 

 

AAEMs contain positively charged (cationic) headgroups that have been suggested to 

dissociate more weakly than the sulphonic acid groups found in Nafion;  coupled with the 

inherently lower electrochemical mobility of OH- ions compared to protons, means that AAEMs 

typically have ionic conductivities approximately a quarter of those for PEMs [6]. Many AAEMs 

include more cationic groups along the polymer backbone to improve ion exchange capacity 

(IEC) and thus the ionic conductivity; however, the increased fixed charge concentration can 

lead to deterioration of the AAEMs’ mechanical properties [7-9]. 

 

The most common cationic group in AAEMs is quaternary ammonium, [R4N+]  [10], which is 

often used as it has higher stability within alkaline media compared to phosphonium or 

sulphonium groups [11]. However, it has been well documented that AAEMs can also suffer 

from chemical instability in alkaline environments [11-13], with chemical degradation 

stemming largely from nucleophilic attack by hydroxide ions on the cationic fixed charged 

sites; a process accelerated by operation at elevated temperatures. 

 

For example, the quaternary ammonium group is susceptible to cleavage in the presence of 

hydroxide ions, leading to the E2 elimination reaction (the Hofmann elimination) shown in 

Figure 1. 

 

During E2 elimination, hydroxyl ions attack β-hydrogens, leading to the formation of an alkene, 

an amine and a water molecule. Most work to date has suggested that Hofmann elimination 

is negligible below 60°C, but much faster at higher temperatures, resulting in significant 

membrane degradation [14-16]. This is an obvious limitation for current alkaline membranes 

as the kinetic benefit of operating at higher temperatures is unobtainable. 

 

The other key mode of ionomer degradation is direct nucleophilic displacement at the cation 

site; this can occur through two possible reaction pathways for quaternary ammonium charge 

sites, as shown below in Figures 2 and 3. In these cases, the hydroxide ions attack at either 
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the methyl group, forming methanol, or at the C-C bond between the alpha and beta carbons 

to cleave the cation site (SN2 reaction) [12]. These mechanisms are further discussed 

elsewhere [17, 18]. Other degradation routes presented within the literature include 

deprotonation of the [R4N+] headgroups to produce nitrogen ylide intermediaries [19, 20] and 

specific studies on the degradation of the polymer backbone put forward by Arges et al. [21, 

22], Chen and Hickner [23] and Mohanty et al. [24]. The consequence of these degradation 

mechanisms is a loss in the number of ion-exchange groups and a subsequent decrease in 

OH- conductivity, with consequences for fuel cell performance. 

 

As with most SPEs, AAEM hydroxyl conduction improves with hydration as the ionomer 

channels solvate and subsequently swell [25, 26]. There is a balance between improved 

membrane conductivity through hydration and the deleterious effects on performance seen in 

fuel cells caused by the formation of liquid water blocking reactant channels and gas diffusion 

layer pores. Recent published work [17, 20, 27] on formulated head groups has added a new 

dynamic to this balance, indicating a correlation between ion solvation (and hence ionomer 

hydration) and ionomer degradation by nucleophilic attack. 

 

The model presented by Chempath et al. [17] implements an untethered cationic head group, 

[N(CH3)4]+, and shows that the degradation mechanisms appear more aggressive in a system 

with low water content. Work by Macomber et al. [20] reports a similar conclusion, where the 

thermal degradation of tetramethyl ammonium hydroxide is retarded by hydration. In both 

cases, the investigations explain that a dehydrated membrane exhibits more aggressive 

degradation, as both the hydroxyl ions and cations remain un-solvated and thus more reactive 

[17, 20]. 

 

This investigation experimentally explores how specific hydration levels affect the alkaline 

instability and hence degradation mechanisms of a commercially available AAEM ionomer 

(Tokuyama, Japan) with tethered quaternary ammonium headgroups, using a quartz crystal 

microbalance (QCM). The QCM has proved to be a powerful in-situ mass monitoring technique 

for the study of polymer interactions at a solid interface, offering nanogram mass resolution 

[28-31]. In-line mass spectrometry is used alongside the QCM in this study to further elucidate 

the importance (and limitations) of cation and hydroxide ion solvation for the stability of an 

AAEM ionomer. 
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2  Experimental 

 

2.1 Quartz Crystal Microbalance 

The QCM is a bulk acoustic wave (BAW) resonator that is often used as an in-situ mass 

monitoring device with nanogram resolution [32, 33].  With an applied voltage, the QCM 

oscillates at a specific frequency as a function of its dimensions and the amount of mass 

deposited on its electrodes. If the system under consideration undergoes a mass deposition 

or loss, the shift in frequency can be accurately measured and the analogous contacting mass 

change can be determined using the Sauerbrey equation: 

 

𝛥𝑓 =  
−2 𝑓𝑜

2 𝛥𝑚

𝐴√µ𝑞 𝜌𝑞

 
(1) 

 

 

Where Δf is the measured frequency shift, f0 is the microbalance’s fundamental frequency, A 

is the piezoelectric area, μq and ρq are the shear modulus and density of quartz respectively, 

and Δm is the corresponding mass change. 

 

Aspects of the use of the Sauerbrey equation are well established and the reader is directed 

to [32-34] for further information. Studies often only consider the frequency shift of the QCM, 

limiting the extent of information accessible using the technique. Additional insight can be 

derived about viscoelastic changes in thin films by using crystal admittance spectroscopy 

(CAS). In the conventional (active) mode of operation, the QCM oscillates at its natural 

frequency and the Sauerbrey equation is used to provide a method of measuring mass change 

on the crystal surface. However, in complex systems, the frequency response can also be a 

function of the viscoelastic properties of the deposited material and the surrounding 

environment [35]. To better understand the acoustic coupling of the crystal with a deposited 

layer (composite resonator) and the surrounding environment, CAS (passive QCM operation) 

can be used to drive the frequency of oscillation across the resonance region [32, 36, 37]. 

 

CAS is described in detail elsewhere and the reader is directed to these sources for a more 

comprehensive guide [32, 36]. CAS is used in this investigation alongside equivalent circuit 

analysis (i.e. the modified Butterworth Van Dyke equivalent circuit, Figure 4) [25, 36, 38] to 

monitor the changes in the viscoelastic properties of deposited layers during operation and to 

further classify the findings seen using the active oscillation methods. 
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2.2 Ionomer Casting 

AAEMs based on [R4N+] are known to form carbonates in the presence of CO2 (even at low 

concentrations) [39-41] and thus the experimental set up was developed to preclude any CO2 

entering the system before and during ionomer casting and operation. The experimental set-

up is shown in Figure 5 and a further explanation is available in other work published by the 

authors [25]. 

 

The commercially available (OH- conducting) AS-4 ionomer dispersion (Tokuyama, Japan) is 

cast in-situ under a 100 ml min-1 stream of dry nitrogen (BOC, UK) directly onto a 6 MHz, 14 

mm, gold coated double-anchor top electrode QCM (Inficon) using a micro-pipette. The 

casting process for each experimental run is conducted at 0% relative humidity (RH) to 

eliminate the water content contribution to the ionomer thickness calculations. The composite 

resonator is then held at 55 C for 1 hour to allow the suspending IPA solution to evaporate 

and the ionomer to anneal. 

 

The ionomer thickness is subsequently determined using the Sauerbrey Equation (1) and 

Equation 2 below: 

 

𝑡𝑖 =  
𝑚𝑖

𝐴 𝜌𝑖
 (2) 

 

 

Where ti is the ionomer thickness, mi is the ionomer mass (determined from the Sauerbrey 

equation), A is the cast area and ρi the density of the recast ionomer. 

 

This investigation uses cast thin film (100 ± 4 nm) ionomers for all studies to ensure that the 

cast mass is within the QCM’s operable range [30], as well as to minimise erroneous levels of 

internal water diffusion contribution from the bulk when operating through the investigative 

range of relative humidities [29, 42, 43]. 

 

2.3 Composite resonator operation 

During this investigation, the resonator is initially actively oscillated during the casting process 

to determine the ionomer thickness, as described; it is subsequently passively oscillated for 

the rest of the investigation to determine the effect of operation at elevated temperatures 

through a range of relative humidities. 

 



6 

 

After annealing, the composite resonator is passively operated at 55C (at a specific relative 

humidity) until it attains a stable frequency. The operating temperature is then ramped and 

held at 65C for 45 mins, it is then cooled back to 55C. This investigation is repeated through 

a range of relative humidities with a freshly cast 100 nm composite resonator for each run. 

CAS data is recorded before and after the microbalance temperature ramp and the 

corresponding frequency shift is measured. Equivalent circuit fitting (Figure 4) is used to find 

the change in resonant frequency. 

 

This investigation focuses primarily on determining a relative shift in the system’s 

viscoelasticity during operation. As shown in Figure 4, the viscoelastic component can be 

represented by fitting the L2 and R2 terms; however, for simplicity of fitting and comparison, 

the L1 and L2 terms are frequently combined and the R2 value (representing the power 

dissipation from the QCM surface into the contacting media) can be used to represent the 

relative shift in the composite resonator’s viscoelastic properties [25, 32, 36]. 

 

The apparatus and rig design used throughout this investigation is shown in Figure 5, as 

described previously [25]. The system has been extensively tested and modified to minimise 

the effect of static capacitance – present in all systems from the resonator holder. Active 

oscillation measurements, in which the composite resonator’s frequency response is 

measured when operated at a specific voltage, were carried out using a QCM analogue 

controller (QCM200, Stanford Research Systems, USA). The admittance or passive response 

is achieved using a Solartron 1260A impedance / gain phase analyser. 

 

An in-line mass spectrometer (Hiden, UK) was used to analyse the components of the exhaust 

gas exiting the humidification chamber, to evaluate the extent of thermal degradation 

occurring. 
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3  Results and Discussion 

 

Figure 6 shows admittance data from the water uptake of a Tokuyama drop-cast ionomer 

operating through a range of relative humidities; the figure is adapted from a previous 

investigation presented by the authors [25]. The inset figure gives the admittance Bode plot 

showing the shift in series resonant frequency (Δfs) with increasing relative humidity. The 

observed trend exhibits two regimes of operation and has been attributed to distinct water 

uptake mechanisms; the first occurring between 0 – 65% relative humidity where the ionomer 

adsorbs water molecules that are used primarily for ionomer solvation, followed by a region 

between 65 – 100% RH in which the adsorbed water acts to swell the previously solvated 

ionomer channels [25]. 

 

The following investigation compares the ionomer degradation and solvation using the QCM, 

CAS and mass spectrometry. 

The admittance data for the composite resonator operating at 55C before and after the rise 

in operating temperature (to 65C for 45 mins) were recorded and fitted using the equivalent 

circuit shown in Figure 4. The system’s viscoelasticity is represented by the R2 term in the 

equivalent circuit [25, 30, 32], and is the main component of interest in this study. The relative 

difference in viscoelasticity can be represented by the shift in R2. The percentage change in 

R2 before and after composite resonator operation at elevated temperatures for a range of 

relative humidities is shown in Figure 7.  

 

Each data point shown in Figure 7 is conducted with a freshly cast composite resonator at a 

specific RH; consequently, there is no additional hydration contribution to the composite 

resonator’s viscoelasticity. This allows the percentage shifts in R2 to be directly related to the 

composite resonator’s viscoelasticity and subsequently to the processes occurring on the 

ionomer. 

 

It can be seen that in general (initially excluding the -% ΔR2 shift at 0% RH), as the relative 

humidity increases, the shift in the viscoelasticity of the ionomer layer, represented by the % 

change in R2, increases from -11.2% at 11% RH to -4.2% at 88% RH. 

 

Comparing the observed trend in Figure 7, with the water uptake mechanism data presented 

in Figure 6, it can be seen that the -% ΔR2 shift is most significant during ionomer solvation, 

i.e. between 11% and 66% RH. Below 66% RH, the ionomer is only partially solvating, the 
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OH- ions and the cationic headgroups are more reactive and thus aggressive degradation can 

occur [20]. 

 

In the second water loading mechanism (above ~65% RH) in Figure 6, where the ionomer is 

fully solvated and undergoing swelling, the corresponding ionomer’s -% ΔR2 is significantly 

lower. This suggests that as the ions within the ionomer solvate, the degradation reaction 

becomes less aggressive. Between 66% and 88% RH, a constant shift in -% ΔR2 is recorded, 

and correlates with the fact that the ionomer is fully solvated and in the swelling regime [25]. 

 

The experimental observations shown here support the computational and experimental 

theories proposed by Chempath et al. [17] and Macomber et al. [20] respectively (albeit for 

different systems), showing that hydration does indeed improve the ionomer’s resistance to 

degradation at elevated temperatures. 

 

At 0% RH, -% ΔR2 changes by only 5.1% (Figure 7). This is likely to be due to ‘collapsed’ 

ionomer channels (similar to that of Nafion); and only through hydration of the channels can 

they expand and allow the movement of OH- ions to the cationic head groups [44]. Thus, at 

0% RH the channels impede access of OH- ions, which results in minimal membrane 

degradation (and viscoelastic change associated with the shift in R2). 

 

Whilst the QCM is able to provide useful insight into what is happening at the interfacial level 

of the ionomer, it does not provide chemical information on the degradation process. By 

applying in-line mass spectrometry to the humidification chamber exhaust, it is possible to 

distinguish between regimes of membrane degradation and stability. 

 

The mass spectrum shown in Figure 8a and the inset represent the system when the 

composite resonator is operating at 55C under a dry flow of nitrogen. This measurement is 

performed at 0% RH to simplify the analysis and remove water and constituent element peaks 

from the data. As expected, peaks appear at mass numbers 14, 28 and 29, indicating the 

presence of only nitrogen. This confirms that there is no discernible membrane degradation at 

55C, and that the system is completely closed to air (discounting the possibility of the 

formation of carbonates in the presence of CO2). 

 

Figure 8b, shows the mass spectrum when operated at 65C at 0% RH (after 30 mins); the 

presence of additional mass number peaks are observed and summarised in Table 1. 



9 

 

Table 1 suggests possible element and hydrocarbon (side chain and/or backbone) fractures 

related to the mass numbers seen in Figure 8b; these correlate with the type of species 

expected for AAEM degradation products, as seen in Figures 1-3 and [21-24]. Whilst it is not 

possible to confirm the exact products without specific knowledge of the proprietary Tokuyama 

ionomer structure, the results clearly show the effect of operating at elevated temperature, 

and support the attribution of viscoelastic shifts seen on the QCM to ionomer degradation 

within the system. 
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4  Conclusions 

 

QCM analysis of AAEM thin films under accelerated thermal degradation conditions has been 

performed as a function of the relative humidity of the gas stream. Experimental results align 

with the theories proposed by Chempath et al. [17] and Macomber et al. [20], and suggest that 

humidity plays an important role in AAEM ionomer thermal degradation stability and that 

degradation can be minimised by ensuring a well hydrated membrane that is operating in the 

‘swelling’ mode; however, thermal degradation cannot be entirely avoided. For this system, a 

RH above ~66% shows reduced membrane degradation, corresponding to the point at which 

the ionomer is fully solvated. 
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 Captions: 

 

Figure 1: Hofmann (E2) elimination reaction mechanism. 

 

Figure 2: Direct nucleophilic degradation, Pathway 1 

 

Figure 3: Direct nucleophilic degradation, Pathway 2 

 

Figure 4: Modified Butterworth Van Dyke equivalent circuit (where LX, CX and RX are 

electrical analogies of electromechanical properties of the composite resonator [16, 24]). 

 

Figure 5: Experimental rig set-up. The inset figure on the bottom left shows the variable 

humidification chamber (fabricated in-house) in which the QCM is located. 

 

Figure 6: CAS results for water uptake of the Tokuyama AS-4 membrane showing the effect 

of relative humidity on the composite resonator’s series resonant frequency, adapted from 

our previously published work [16] (lines added as a guide to the eye). The inset image 

shows the raw Bode plot data. 

 

Figure 7: The composite resonator’s percentage shift in R2 (representing the viscoelastic 

change in the film) when operating before and after exposure to elevated temperatures as a 

function of relative humidity. 

 

Figure 8: In-line mass spectrometry data for the composite resonator operating at: a) 55C 

(inset shows the full relative intensity scale) and b) 65C. (the results presented here are 

taken at 0% RH) 

 

Table 1: Mass number peaks registered in Figure 8b when the composite resonator is 

operating at 65C and suggested corresponding elements and hydrocarbon fractures. 

 


