35 research outputs found

    Controlling Destiny through Chemistry: Small-Molecule Regulators of Cell Fate

    Get PDF

    Mechanism and Transition-State Structures for Nickel-Catalyzed Reductive Alkyne−Aldehyde Coupling Reactions

    No full text
    The mechanism of nickel-catalyzed reductive alkyne−aldehyde coupling reactions has been investigated using density functional theory. The preferred mechanism involves oxidative cyclization to form the nickeladihydrofuran intermediate followed by transmetalation and reductive elimination. The rate- and selectivity-determining oxidative cyclization transition state is analyzed in detail. The d → π* back-donation stabilizes the transition state and leads to higher reactivity for alkynes than alkenes. Strong Lewis acids accelerate the couplings with both alkynes and alkenes by coordinating with the aldehyde oxygen in the transition state.National Science Foundation (U.S.) (CHE-0548209

    Nivolumab Plus Ipilimumab Versus EXTREME Regimen as First-Line Treatment for Recurrent/Metastatic Squamous Cell Carcinoma of the Head and Neck: The Final Results of CheckMate 651.

    No full text
    PURPOSE: CheckMate 651 (ClinicalTrials.gov identifier: NCT02741570) evaluated first-line nivolumab plus ipilimumab versus EXTREME (cetuximab plus cisplatin/carboplatin plus fluorouracil ≤ six cycles, then cetuximab maintenance) in recurrent/metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). METHODS: Patients without prior systemic therapy for R/M SCCHN were randomly assigned 1:1 to nivolumab plus ipilimumab or EXTREME. Primary end points were overall survival (OS) in the all randomly assigned and programmed death-ligand 1 combined positive score (CPS) ≥ 20 populations. Secondary end points included OS in the programmed death-ligand 1 CPS ≥ 1 population, and progression-free survival, objective response rate, and duration of response in the all randomly assigned and CPS ≥ 20 populations. RESULTS: Among 947 patients randomly assigned, 38.3% had CPS ≥ 20. There were no statistically significant differences in OS with nivolumab plus ipilimumab versus EXTREME in the all randomly assigned (median: 13.9 v 13.5 months; hazard ratio [HR], 0.95; 97.9% CI, 0.80 to 1.13; P = .4951) and CPS ≥ 20 (median: 17.6 v 14.6 months; HR, 0.78; 97.51% CI, 0.59 to 1.03; P = .0469) populations. In patients with CPS ≥ 1, the median OS was 15.7 versus 13.2 months (HR, 0.82; 95% CI, 0.69 to 0.97). Among patients with CPS ≥ 20, the median progression-free survival was 5.4 months (nivolumab plus ipilimumab) versus 7.0 months (EXTREME), objective response rate was 34.1% versus 36.0%, and median duration of response was 32.6 versus 7.0 months. Grade 3/4 treatment-related adverse events occurred in 28.2% of patients treated with nivolumab plus ipilimumab versus 70.7% treated with EXTREME. CONCLUSION: CheckMate 651 did not meet its primary end points of OS in the all randomly assigned or CPS ≥ 20 populations. Nivolumab plus ipilimumab showed a favorable safety profile compared with EXTREME. There continues to be a need for new therapies in patients with R/M SCCHN

    Origins of Regioselectivity and Alkene-Directing Effects in Nickel- Catalyzed Reductive Couplings of Alkynes and Aldehydes

    No full text
    The origins of reactivity and regioselectivity in nickel-catalyzed reductive coupling reactions of alkynes and aldehydes were investigated with density functional calculations. The regioselectivities of reactions of simple alkynes are controlled by steric effects, while conjugated enynes and diynes are predicted to have increased reactivity and very high regioselectivities, placing alkenyl or alkynyl groups distal to the forming C−C bond. The reactions of enynes and diynes involve 1,4-attack of the Ni−carbonyl complex on the conjugated enyne or diyne. The consequences of these conclusions on reaction design are discussed.National Science Foundation (U.S.) (grant no. CHE-0548209

    Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings

    No full text
    The control of regiochemistry is a considerable challenge in the development of a wide array of catalytic processes. Simple π-components such as alkenes, alkynes, 1,3-dienes, and allenes are among the many classes of substrates that present complexities in regioselective catalysis. Considering an internal alkyne as a representative example, when steric and electronic differences between the two substituents are minimal, differentiating among the two termini of the alkyne presents a great challenge. In cases where the differences between the alkyne substituents are substantial, overcoming those biases to access the regioisomer opposite that favored by substrate biases often presents an even greater challenge. [Image: see text] Nickel-catalyzed reductive couplings of unsymmetrical π-components make up a group of reactions where control of regiochemistry presents a challenging but important objective. In the course of our studies of aldehyde-alkyne reductive couplings, complementary solutions to challenges in regiocontrol have been developed. Through careful selection of the ligand and reductant, as well as the more subtle reaction variables such as temperature and concentration, effective protocols have been established that allow highly selective access to either regiosiomer of the the allylic alcohol products using a wide range of unsymmetrical alkynes. Computational studies and an evaluation of reaction kinetics have provided an understanding of the origin of the regioselectivity control. Throughout the various procedures described, the development of ligand-substrate interactions play a key role, and the overall kinetic descriptions were found to differ between protocols. Rational alteration of the rate-determining step plays a key role in the regiochemistry reversal strategy, and in one instance, the two possible regioisomeric outcomes in a single reaction were found to operate by different kinetic descriptions. With this mechanistic information in hand, the empirical factors that influence regiochemistry can be readily understood, and more importantly, the insights suggest simple and predictable experimental variables to achieving a desired reaction outcome. These studies thus present a detailed picture of the influences that control regioselectivity in a specific catalytic reaction, but they also delineate strategies for regiocontrol that may extend to numerous classes of reactions. The work provides an illustration of how insights into the kinetics and mechanism of a catalytic process can rationalize subtle empirical findings and suggest simple and rational modifications in procedure to access a desirable reaction outcome. Furthermore, these studies present an illustration of how important challenges in organic synthesis can be met by novel reactivity afforded by base metal catalysis. The use of nickel catalysis in this instance not only provides an inexpensive and sustainable method for catalysis, but also enables unique reactivity patterns not accessible to other metals
    corecore