2,266 research outputs found

    First evidence of coherent K+K^{+} meson production in neutrino-nucleus scattering

    Get PDF
    Neutrino-induced charged-current coherent kaon production, νμAμK+A\nu_{\mu}A\rightarrow\mu^{-}K^{+}A, is a rare, inelastic electroweak process that brings a K+K^+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than neutrino-induced charged-current coherent pion production, because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+K^+, μ\mu^- and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ3\sigma significance.Comment: added ancillary file with information about the six kaon candidate

    Measurement of Total and Differential Cross Sections of Neutrino and Antineutrino Coherent π±\pi^\pm Production on Carbon

    Full text link
    Neutrino induced coherent charged pion production on nuclei, νμAμ±πA\overline{\nu}_\mu A\to\mu^\pm\pi^\mp A, is a rare inelastic interaction in which the four-momentum squared transfered to the nucleus is nearly zero, leaving it intact. We identify such events in the scintillator of MINERvA by reconstructing |t| from the final state pion and muon momenta and by removing events with evidence of energetic nuclear recoil or production of other final state particles. We measure the total neutrino and antineutrino cross sections as a function of neutrino energy between 2 and 20 GeV and measure flux integrated differential cross sections as a function of Q2Q^2, EπE_\pi and θπ\theta_\pi. The Q2Q^2 dependence and equality of the neutrino and anti-neutrino cross-sections at finite Q2Q^2 provide a confirmation of Adler's PCAC hypothesis

    Single neutral pion production by charged-current νˉμ\bar{\nu}_\mu interactions on hydrocarbon at Eν=\langle E_\nu \rangle = 3.6 GeV

    Get PDF
    Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for νˉe\bar{\nu}_e appearance oscillation experiments. The differential cross sections for π0\pi^0 momentum and production angle, for events with a single observed π0\pi^0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π0\pi^0 kinematics for this process.Comment: 6 pages, 5 figures, submitted to Physics Letters

    Measurement of the muon anti-neutrino double-differential cross section for quasi-elastic scattering on hydrocarbon at~Eν3.5E_\nu \sim 3.5 GeV

    Full text link
    We present double-differential measurements of anti-neutrino quasi-elastic scattering in the MINERvA detector. This study improves on a previous single differential measurement by using updated reconstruction algorithms and interaction models, and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We include in our signal definition zero-meson final states arising from multi-nucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data that incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.Comment: 47 pages, 31 figure

    Direct Measurement of Nuclear Dependence of Charged Current Quasielastic-like Neutrino Interactions using MINERvA

    Get PDF
    Charged-current νμ\nu_{\mu} interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielastic-like interactions. The transfered four-momentum squared to the target nucleus, Q2Q^2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2Q^2 and the cross-section ratios of iron, lead and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on atomic number. While the quasielastic-like scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments

    Measurement of Partonic Nuclear Effects in Deep-Inelastic Neutrino Scattering using MINERvA

    Get PDF
    The MINERvA collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5 - 50 GeV. Good agreement is found between the data and predicted ratios, based on charged-lepton nucleus scattering, at medium x and low neutrino energies. However, the data rate appears depleted in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high neutrino energy , is consistent with previous MINERvA observations and with the predicted onset of nuclear shadowing with the the axial-vector current in neutrino scattering

    MINERvA neutrino detector response measured with test beam data

    Get PDF
    The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons are obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4%, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross section measurement program.Comment: as accepted by NIM
    corecore