7,935 research outputs found

    Are the average gait speeds during the 10 meter and 6 minute walk tests redundant in Parkinson disease?

    Full text link
    Published in final edited form as: Gait Posture. 2017 February ; 52: 178–182. doi:10.1016/j.gaitpost.2016.11.033.We investigated the relationships between average gait speed collected with the 10Meter Walk Test (Comfortable and Fast) and 6Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r>0.70, p<0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II-IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population.This study was funded by the Davis Phinney Foundation, the Parkinson's Disease Foundation, and the National Institutes of Health (R01 NS077959, K12 HD055931, UL1 TR000448). The funding sources had no input related to study design, data collection, or decision to submit for publication. (Davis Phinney Foundation; Parkinson's Disease Foundation; R01 NS077959 - National Institutes of Health; K12 HD055931 - National Institutes of Health; UL1 TR000448 - National Institutes of Health

    Classification of phase transitions and ensemble inequivalence, in systems with long range interactions

    Full text link
    Systems with long range interactions in general are not additive, which can lead to an inequivalence of the microcanonical and canonical ensembles. The microcanonical ensemble may show richer behavior than the canonical one, including negative specific heats and other non-common behaviors. We propose a classification of microcanonical phase transitions, of their link to canonical ones, and of the possible situations of ensemble inequivalence. We discuss previously observed phase transitions and inequivalence in self-gravitating, two-dimensional fluid dynamics and non-neutral plasmas. We note a number of generic situations that have not yet been observed in such systems.Comment: 42 pages, 11 figures. Accepted in Journal of Statistical Physics. Final versio

    Survival probability in diffractive Higgs production in high density QCD

    Full text link
    In this paper, the contribution of hard processes described by the BFKL pomeron exchange, is taken into account by calculating the first enhanced diagram. The survival probability is estimated, using the ratio of the first enhanced diagram and the single pomeron amplitude, taking into account all essential pomeron loop diagrams in the toy model of Mueller. The triple pomeron vertex is calculated explicitly in the momentum representation. This calculation is used for estimating the survival probability, It turns out that the survival probability is small, at 0.40.4%{}. Hard pomeron re-scattering processes contribute substantially to the survival probability.Comment: 28 pages, 7 figure

    Colliders and Cosmology

    Full text link
    Dark matter in variations of constrained minimal supersymmetric standard models will be discussed. Particular attention will be given to the comparison between accelerator and direct detection constraints.Comment: Submitted for the SUSY07 proceedings, 15 pages, LaTex, 26 eps figure

    Revealing components of the galaxy population through nonparametric techniques

    Get PDF
    The distributions of galaxy properties vary with environment, and are often multimodal, suggesting that the galaxy population may be a combination of multiple components. The behaviour of these components versus environment holds details about the processes of galaxy development. To release this information we apply a novel, nonparametric statistical technique, identifying four components present in the distribution of galaxy Hα\alpha emission-line equivalent-widths. We interpret these components as passive, star-forming, and two varieties of active galactic nuclei. Independent of this interpretation, the properties of each component are remarkably constant as a function of environment. Only their relative proportions display substantial variation. The galaxy population thus appears to comprise distinct components which are individually independent of environment, with galaxies rapidly transitioning between components as they move into denser environments.Comment: 12 pages, 10 figures, accepted for publication in MNRA

    WMAP-Compliant Benchmark Surfaces for MSSM Higgs Bosons

    Get PDF
    We explore `benchmark surfaces' suitable for studying the phenomenology of Higgs bosons in the minimal supersymmetric extension of the Standard Model (MSSM), which are chosen so that the supersymmetric relic density is generally compatible with the range of cold dark matter density preferred by WMAP and other observations. These benchmark surfaces are specified assuming that gaugino masses m_{1/2}, soft trilinear supersymmetry-breaking parameters A_0 and the soft supersymmetry-breaking contributions m_0 to the squark and slepton masses are universal, but not those associated with the Higgs multiplets (the NUHM framework). The benchmark surfaces may be presented as M_A-tan_beta planes with fixed or systematically varying values of the other NUHM parameters, such as m_0, m_{1/2}, A_0 and the Higgs mixing parameter mu. We discuss the prospects for probing experimentally these benchmark surfaces at the Tevatron collider, the LHC, the ILC, in B physics and in direct dark-matter detection experiments. An Appendix documents developments in the FeynHiggs code that enable the user to explore for her/himself the WMAP-compliant benchmark surfaces.Comment: Minor corrections, references added. 43 pages, 10 figures. Version to appear in JHE

    Large deviation techniques applied to systems with long-range interactions

    Full text link
    We discuss a method to solve models with long-range interactions in the microcanonical and canonical ensemble. The method closely follows the one introduced by Ellis, Physica D 133, 106 (1999), which uses large deviation techniques. We show how it can be adapted to obtain the solution of a large class of simple models, which can show ensemble inequivalence. The model Hamiltonian can have both discrete (Ising, Potts) and continuous (HMF, Free Electron Laser) state variables. This latter extension gives access to the comparison with dynamics and to the study of non-equilibri um effects. We treat both infinite range and slowly decreasing interactions and, in particular, we present the solution of the alpha-Ising model in one-dimension with 0α<10\leq\alpha<1

    Gravitino Dark Matter Scenarios with Massive Metastable Charged Sparticles at the LHC

    Get PDF
    We investigate the measurement of supersymmetric particle masses at the LHC in gravitino dark matter (GDM) scenarios where the next-to-lightest supersymmetric partner (NLSP) is the lighter scalar tau, or stau, and is stable on the scale of a detector. Such a massive metastable charged sparticle would have distinctive Time-of-Flight (ToF) and energy-loss (dE/dxdE/dx) signatures. We summarise the documented accuracies expected to be achievable with the ATLAS detector in measurements of the stau mass and its momentum at the LHC. We then use a fast simulation of an LHC detector to demonstrate techniques for reconstructing the cascade decays of supersymmetric particles in GDM scenarios, using a parameterisation of the detector response to staus, taus and jets based on full simulation results. Supersymmetric pair-production events are selected with high redundancy and efficiency, and many valuable measurements can be made starting from stau tracks in the detector. We recalibrate the momenta of taus using transverse-momentum balance, and use kinematic cuts to select combinations of staus, taus, jets and leptons that exhibit peaks in invariant masses that correspond to various heavier sparticle species, with errors often comparable with the jet energy scale uncertainty.Comment: 23 pages, 10 figures, updated to version published in JHE
    corecore