35,831 research outputs found

    Photoemission Evidence for a Remnant Fermi Surface and d-Wave-Like Dispersion in Insulating Ca2CuO2Cl2

    Full text link
    An angle resolved photoemission study on Ca2CuO2Cl2, a parent compound of high Tc superconductors is reported. Analysis of the electron occupation probability, n(k) from the spectra shows a steep drop in spectral intensity across a contour that is close to the Fermi surface predicted by the band calculation. This analysis reveals a Fermi surface remnant even though Ca2CuO2Cl2 is a Mott insulator. The lowest energy peak exhibits a dispersion with approximately the |cos(kxa)-cos(kya)| form along this remnant Fermi surface. Together with the data from Dy doped Bi2Sr2CaCu2O(8 + delta) these results suggest that this d-wave like dispersion of the insulator is the underlying reason for the pseudo gap in the underdoped regime.Comment: 9 pages, including 7 figures. Published in Science, one figure correcte

    Phosphatidylinositol 3-kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities.

    Get PDF
    BackgroundThe phosphatidylinositol 3-kinase (PI3K) pathway is frequently altered in cancer. This report describes the landscape of PI3K alterations in solid tumors as well as co-alterations serving as potential resistance/attenuation mechanisms.MethodsConsecutive samples were analyzed in a commercial Clinical Laboratory Improvement Amendment-certified laboratory using comprehensive genomic profiling performed by next-generation sequencing (315 genes). The co-alterations evaluated included the Erb-B2 receptor tyrosine kinase 2 (ERBB2), ERBB3, ERBB4, RAS, MET proto-oncogene tyrosine kinase (MET), and mitogen-activated protein kinase kinase (MAP2K) genes as well as tumor protein 53 (TP53), estrogen receptor 1 (ESR1), and androgen receptor (AR).ResultsAlterations in any of 18 PI3K-pathway associated genes were identified in 44% of 60,991 tumors. Although single base and insertions/deletions (indels) were the most frequent alterations, copy number changes and rearrangements were identified in 11% and 0.9% of patients, respectively. Overall, the most frequently altered genes were PIK3 catalytic subunit α (PIK3CA) (13%), phosphatase and tensin homolog (PTEN) (9%), and serine/threonine kinase 11 (STK11) (5%). Tumor types that frequently harbored at least 1 PI3K alteration were uterine (77%), cervical (62%), anal (59%), and breast (58%) cancers. Alterations also were discerned frequently in tumors with carcinosarcoma (89%) and squamous cell carcinoma (62%) histologies. Tumors with a greater likelihood of co-occurring PI3K pathway and MAPK pathway alterations included colorectal cancers (odds ratio [OR], 1.64; P < .001), mesotheliomas (OR, 2.67; P = .024), anal cancers (OR, 1.98; P = .03), and nonsquamous head and neck cancers (OR, 2.03; P = .019). The co-occurrence of ESR1 and/or AR alterations with PI3K alterations was statistically significant in bladder, colorectal, uterine, prostate, and unknown primary cancers.ConclusionsComprehensive genomic profiling reveals altered PI3K-related genes in 44% of solid malignancies, including rare disease and histology types. The frequency of alterations and the co-occurrence of resistance pathways vary by tumor type, directly affecting opportunities for targeted therapy

    Anomalous high energy dispersion in photoemission spectra from insulating cuprates

    Full text link
    Angle resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the \Gamma to (pi,pi) cut show an additional dispersive feature that merges with the known dispersion of the lowest binding energy feature, which follows the usual strongly renormalized dispersion of ~0.35 eV. This higher energy part reveals a dispersion that is very close to the unrenormalized band predicted by band theory. A transfer of spectral weight from the low energy feature to the high energy feature is observed as the \Gamma point is approached. By comparing with theoretical calculations the high energy feature observed here demonstrates that the incoherent portion of the spectral function has significant structure in momentum space due to the presence of various energy scales.Comment: 5 pages, 3 figure

    Sum Rule Description of Color Transparency

    Full text link
    The assumption that a small point-like configuration does not interact with nucleons leads to a new set of sum rules that are interpreted as models of the baryon-nucleon interaction. These models are rendered semi-realistic by requiring consistency with data for cross section fluctuations in proton-proton diffractive collisions.Comment: 22 pages + 3 postscript figures attache

    From Physical to Cyber: Escalating Protection for Personalized Auto Insurance

    Full text link
    Nowadays, auto insurance companies set personalized insurance rate based on data gathered directly from their customers' cars. In this paper, we show such a personalized insurance mechanism -- wildly adopted by many auto insurance companies -- is vulnerable to exploit. In particular, we demonstrate that an adversary can leverage off-the-shelf hardware to manipulate the data to the device that collects drivers' habits for insurance rate customization and obtain a fraudulent insurance discount. In response to this type of attack, we also propose a defense mechanism that escalates the protection for insurers' data collection. The main idea of this mechanism is to augment the insurer's data collection device with the ability to gather unforgeable data acquired from the physical world, and then leverage these data to identify manipulated data points. Our defense mechanism leveraged a statistical model built on unmanipulated data and is robust to manipulation methods that are not foreseen previously. We have implemented this defense mechanism as a proof-of-concept prototype and tested its effectiveness in the real world. Our evaluation shows that our defense mechanism exhibits a false positive rate of 0.032 and a false negative rate of 0.013.Comment: Appeared in Sensys 201

    Multiple-Scattering Series For Color Transparency

    Full text link
    Color transparency CT depends on the formation of a wavepacket of small spatial extent. It is useful to interpret experimental searches for CT with a multiple scattering scattering series based on wavepacket-nucleon scattering instead of the standard one using nucleon-nucleon scattering. We develop several new techniques which are valid for differing ranges of energy. These techniques are applied to verify some early approximations; study new forms of the wave-packet-nucleon interaction; examine effects of treating wave packets of non-zero size; and predict the production of N∗N^*'s in electron scattering experiments.Comment: 26 pages, U.Wa. preprint 40427-23-N9

    Spectra of sparse non-Hermitian random matrices: an analytical solution

    Full text link
    We present the exact analytical expression for the spectrum of a sparse non-Hermitian random matrix ensemble, generalizing two classical results in random-matrix theory: this analytical expression forms a non-Hermitian version of the Kesten-Mckay law as well as a sparse realization of Girko's elliptic law. Our exact result opens new perspectives in the study of several physical problems modelled on sparse random graphs. In this context, we show analytically that the convergence rate of a transport process on a very sparse graph depends upon the degree of symmetry of the edges in a non-monotonous way.Comment: 5 pages, 5 figures, 12 pages supplemental materia

    On separable Fokker-Planck equations with a constant diagonal diffusion matrix

    Full text link
    We classify (1+3)-dimensional Fokker-Planck equations with a constant diagonal diffusion matrix that are solvable by the method of separation of variables. As a result, we get possible forms of the drift coefficients B1(x⃗),B2(x⃗),B3(x⃗)B_1(\vec x),B_2(\vec x),B_3(\vec x) providing separability of the corresponding Fokker-Planck equations and carry out variable separation in the latter. It is established, in particular, that the necessary condition for the Fokker-Planck equation to be separable is that the drift coefficients B⃗(x⃗)\vec B(\vec x) must be linear. We also find the necessary condition for R-separability of the Fokker-Planck equation. Furthermore, exact solutions of the Fokker-Planck equation with separated variables are constructedComment: 20 pages, LaTe
    • …
    corecore