20,033 research outputs found
Recommended from our members
Site-specific mutations in a minimal voltage-dependent K+ channel alter ion selectivity and open-channel block.
MinK is a small membrane protein of 130 amino acids with a single potential membrane-spanning alpha-helical domain. Its expression in Xenopus oocytes induces voltage-dependent, K(+)-selective channels. Using site-directed mutagenesis of a synthetic gene, we have identified residues in the hydrophobic region of minK that influence both ion selectivity and open-channel block. Single amino acid changes increase the channel's relative permeability for NH4+ and Cs+ without affecting its ability to exclude Na+ and Li+. Blockade by two common K+ channel pore blockers, tetraethylammonium and Cs+, was also modified. These results suggest that an ion selectivity region and binding sites for the pore blockers within the conduction pathway have been modified. We conclude that the gene encoding minK is a structural gene for a K+ channel protein
Recommended from our members
The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition.
Charybdotoxin (CTX) is a peptide of known structure that inhibits Shaker K+ channels by a pore-blocking mechanism. Point mutagenesis of all 30 solvent-exposed residues identified the part of the CTX molecular surface making contact with the receptor in the K+ channel. All close-contact residues are clustered in a well-defined interaction surface; the shape of this surface implies that the outer opening of the Shaker channel conduction pore abruptly widens to a 25 x 35 A plateau. A mutagenic scan of the S5-S6 linker sequence of the Shaker K+ channel identified those channel residues influencing CTX binding affinity. The Shaker residues making the strongest contribution to toxin binding are located close to the pore-lining sequence, and more distant residues on both sides of this region influence CTX binding weakly, probably by an electrostatic mechanism. Complementary mutagenesis of both CTX and Shaker suggests that Shaker-F425 contacts a specific area near T8 and T9 on the CTX molecular surface. This contact point constrains Shaker-F425 to be located at a 20 A radial distance from the pore axis and 10-15 A above the "floor" of the CTX receptor
Recommended from our members
Functional characterization of a minimal K+ channel expressed from a synthetic gene.
A gene for a slowly activating, voltage-dependent K(+) -selective channel was designed and synthesized on the basis of its known amino acid sequence. The synthetic gene was cloned into a transcription vector, and in vitro transcribed mRNA was injected into Xenopus oocytes for electrophysiological assay of the resulting ionic currents. The currents are voltage-dependent and highly selective for K+ over Na+. The selectivity among monovalent cations follows a familiar K(+)- channel sequence: K+ greater than Rb+ greater than NH4+ greater than Cs+ much greater than Na+, Li+. The currents are inhibited by Ba2+, Cs+, and tetraethylammonium (TEA), common pore blockers of K+ channels. Open-channel blockade by Cs+ (but not by Ba2+ or TEA) depends on applied voltage. The major inhibitory effect of Ba2+ is to alter channel gating by favoring the closed state; this effect is specific for Ba2+ and is relieved by external K+. The results argue that although the polypeptide expressed is very small for a eukaryotic ion channel, 130 amino acid residues in length, the ionic currents observed are indeed mediated by a genuine K(+) -channel protein. This synthetic gene is therefore well suited for a molecular analysis of the basic mechanisms of K(+) -channel function
Recommended from our members
Modeling singular mineralization processes due to fluid pressure fluctuations
Mineralization in the Earth's crust can be regarded as a singular process resulting in large amounts of mass accumulation and element enrichment over short time or space scales. The elemental concentrations modeled by fractals and multifractals show self-similarity and scale-invariant properties. We take the view that fluid-pressure variations in response to earthquakes or fault rupture are primarily responsible for changes in solubility and trigger transient physical and chemical variations in ore-forming fluids that enhance the mineralization process. Based on this general concept, we investigated mineral precipitation processes driven by rapid fluid pressure reductions by coupling mineralization to a cellular automaton model to reveal the nonlinear mechanism of the orogenic gold mineralization process using simulation. In the model, fluid pressure can increase to the rock failure condition, which was set as lithostatic pressure at a depth of 10 km (270 MPa), due to either porosity reduction or dehydration reactions. Rapid drops in pressure resulting from fault rupture or local hydrofracture may induce repeated gold precipitation. The geochemical patterns generated by the model evolve from depletion to enrichment patterns, and from spatially random to spatially clustered structures quantified by multifractal models and geostatistics. Results show how metal elements self-organize to form high metal concentration patterns displaying self-similarity and scale-invariance. These transitions are attributed to the growth and coalescence of sub-networks with different fluid pressures up to the percolation threshold, resulting in a wide range of fluid pressure reductions and gold precipitation in the form of clusters. The results suggest that cyclic evolution of fluid pressure and its effects on gold precipitation systems can effectively mimic the repeated mineralization superposition process, and generate complex geochemical patterns characterized by a multifractal model. The nonlinear behavior exhibits scale-invariance and self-organized critical threshold, where mineral phase separations result from fluid pressure reductions associated with fault failure
Variants of the human PPARG locus and the susceptibility to chronic periodontitis
Apart from its regulatory function in lipid and glucose metabolism, peroxisome proliferator-activated receptor (PPAR)γ has impact on the regulation of inflammation and bone metabolism. The aim of the study was to investigate the association of five polymorphisms (rs10865710, rs2067819, rs3892175, rs1801282, rs3856806) within the PPARG gene with chronic periodontitis. The study population comprised 402 periodontitis patients and 793 healthy individuals. Genotyping of the PPARG gene polymorphisms was performed by PCR and melting curve analysis. Comparison of frequency distribution of genotypes between individuals with periodontal disease and healthy controls for the polymorphism rs3856806 showed a P-value of 0.04 but failed to reach significance after correction for multiple testing (P 0.90). A 3-site analysis (rs2067819-rs1801282-rs3856860) revealed five haplotypes with a frequency of ≥1% among cases and controls. Following adjustment for age, gender and smoking, none of the haplotypes was significantly different between periodontitis and healthy controls after Bonferroni correction. This study could not show a significant association between PPARG gene variants and chronic periodontitis
Environmental impacts of alternative cement binders.
Cement production is among the most difficult industrial activities to decarbonize. Various measures have been proposed and explored to reduce its CO2 emissions. Among these measures, the substitution of portland cement (PC) clinker with alternative materials is arguably the most effective, and consequently is an area of high research and commercial interest. However, few studies have systematically quantified environmental impacts of alternative, i.e., non-PC, clinkers. Here, we quantify and compare environmental impacts arising from the production of binders derived from several of the most commonly investigated alternative cement systems. We show that binders derived from most of these alternative cements result in lower greenhouse gas (GHG) emissions as well as other indicators of environmental impacts relative to the PC binder. The extent of these reductions varies as a function of energy requirements for production, process-related emissions from clinker formation, and raw materials demand. While utilization of alternative cements can be environmentally beneficial, similar reductions in GHG emissions can be achieved through use of partial replacement of PC with mineral admixtures. In this work, we quantitatively demonstrate the potential for alternative binders to mitigate environmental burdens and highlight the need to consider trade-offs among environmental impact categories when assessing these products
Improved Multiple Comparisons With The Best In Response Surface Methodology
A method to construct simultaneous confidence intervals about the difference in mean responses at the stationary point and at x for all x within a sphere with radius I R is proposed. Results of an efficiency study to compare the new method and the existing method by Moore and Sa (1999) are provided
Point‐of‐care lung ultrasound in patients with COVID‐19 – a narrative review
Ultrasound imaging of the lung and associated tissues may play an important role in the management of patients with COVID‐19–associated lung injury. Compared with other monitoring modalities, such as auscultation or radiographic imaging, we argue lung ultrasound has high diagnostic accuracy, is ergonomically favourable and has fewer infection control implications. By informing the initiation, escalation, titration and weaning of respiratory support, lung ultrasound can be integrated into COVID‐19 care pathways for patients with respiratory failure. Given the unprecedented pressure on healthcare services currently, supporting and educating clinicians is a key enabler of the wider implementation of lung ultrasound. This narrative review provides a summary of evidence and clinical guidance for the use and interpretation of lung ultrasound for patients with moderate, severe and critical COVID‐19–associated lung injury. Mechanisms by which the potential lung ultrasound workforce can be deployed are explored, including a pragmatic approach to training, governance, imaging, interpretation of images and implementation of lung ultrasound into routine clinical practice
The problem of interpretation in vignette methodology in research with young people
In this paper we explore how interpretation is dealt with by researchers using a vignette methodology. Researchers using vignette methodology often struggle with interpretation: how to interpret the responses when participants shift between discussing the vignettes as themselves, taking the perspective of the character in the vignette and commenting on what ‘ought’ to happen. We argue that by foregrounding a consideration of the method with an explicitly articulated theoretical position of dialogicality, issues inherent in interpretation become a valuable addition to the research rather than an obstacle to be overcome. In the paper we discuss ‘Louise’ a young carer, detailing the various positions she takes in her talk about the vignette of Mary, a fictitious young carer, to illustrate how a perspective based in dialogical theory contributed to the analysis of her various moves through different identity positions
- …