139,360 research outputs found

    Model checking medium access control for sensor networks

    Get PDF
    We describe verification of S-MAC, a medium access control protocol designed for wireless sensor networks, by means of the PRISM model checker. The S-MAC protocol is built on top of the IEEE 802.11 standard for wireless ad hoc networks and, as such, it uses the same randomised backoff procedure as a means to avoid collision. In order to minimise energy consumption, in S-MAC, nodes are periodically put into a sleep state. Synchronisation of the sleeping schedules is necessary for the nodes to be able to communicate. Intuitively, energy saving obtained through a periodic sleep mechanism will be at the expense of performance. In previous work on S-MAC verification, a combination of analytical techniques and simulation has been used to confirm the correctness of this intuition for a simplified (abstract) version of the protocol in which the initial schedules coordination phase is assumed correct. We show how we have used the PRISM model checker to verify the behaviour of S-MAC and compare it to that of IEEE 802.11

    Microprobe investigation of brittle segregates in aluminum MIG and TIG welds

    Get PDF
    Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds

    Supersymmetric SO(10) Grand Unification at the LHC and Beyond

    Get PDF
    We study models of supersymmetric grand unification based on the SO(10) gauge group. We investigate scenarios of non-universal gaugino masses including models containing a mixture of two representations of hidden sector chiral superfields. We analyse the effect of excluding mu from the fine-tuning measure, and confront the results with low energy constraints, including the Higgs boson mass, dark matter relic density and supersymmetry bounds. We also determine high scale Yukawa coupling ratios and confront the results with theoretical predictions. Finally, we present two additional benchmarks that should be explored at the LHC and future colliders.Comment: Published versio

    A brief review of Regge calculus in classical numerical relativity

    Get PDF
    We briefly review past applications of Regge calculus in classical numerical relativity, and then outline a programme for the future development of the field. We briefly describe the success of lattice gravity in constructing initial data for the head-on collision of equal mass black holes, and discuss recent results on the efficacy of Regge calculus in the continuum limit.Comment: 2 pages, submitted to the Proceedings of the IX Marcel Grossmann Meeting, Rome, July 2-8, 200

    Breaking Symmetries in Graph Representation

    Get PDF
    There are many complex combinatorial problems which involve searching for an undirected graph satisfying a certain property. These problems are often highly challenging because of the large number of isomorphic representations of a possible solution. In this paper we introduce novel, effective and compact, symmetry breaking constraints for undirected graph search. While incomplete, these prove highly beneficial in pruning the search for a graph. We illustrate the application of symmetry breaking in graph representation to resolve several open instances in extremal graph theory

    A New S-S' Pair Creation Rate Expression Improving Upon Zener Curves for I-E Plots

    Full text link
    To simplify phenomenology modeling used for charge density wave (CDW)transport, we apply a wavefunctional formulation of tunneling Hamiltonians to a physical transport problem characterized by a perturbed washboard potential. To do so, we consider tunneing between states that are wavefunctionals of a scalar quantum field. I-E curves that match Zener curves - used to fit data experimentally with wavefunctionals congruent with the false vacuum hypothesis. This has a very strong convergence with electron-positron pair production representations.The similarities in plot behavior of the current values after the threshold electric field values argue in favor of the Bardeen pinning gap paradigm proposed for quasi-one-dimensional metallic transport problems.Comment: 22 pages,6 figures, and extensive editing of certain segments.Paper has been revised due to acceptance by World press scientific MPLB journal. This is word version of file which has been submitted to MPLBs editor for final proofing. Due for publication perhaps in mid spring to early summer 200

    A fully (3+1)-D Regge calculus model of the Kasner cosmology

    Get PDF
    We describe the first discrete-time 4-dimensional numerical application of Regge calculus. The spacetime is represented as a complex of 4-dimensional simplices, and the geometry interior to each 4-simplex is flat Minkowski spacetime. This simplicial spacetime is constructed so as to be foliated with a one parameter family of spacelike hypersurfaces built of tetrahedra. We implement a novel two-surface initial-data prescription for Regge calculus, and provide the first fully 4-dimensional application of an implicit decoupled evolution scheme (the ``Sorkin evolution scheme''). We benchmark this code on the Kasner cosmology --- a cosmology which embodies generic features of the collapse of many cosmological models. We (1) reproduce the continuum solution with a fractional error in the 3-volume of 10^{-5} after 10000 evolution steps, (2) demonstrate stable evolution, (3) preserve the standard deviation of spatial homogeneity to less than 10^{-10} and (4) explicitly display the existence of diffeomorphism freedom in Regge calculus. We also present the second-order convergence properties of the solution to the continuum.Comment: 22 pages, 5 eps figures, LaTeX. Updated and expanded versio

    On the convergence of Regge calculus to general relativity

    Get PDF
    Motivated by a recent study casting doubt on the correspondence between Regge calculus and general relativity in the continuum limit, we explore a mechanism by which the simplicial solutions can converge whilst the residual of the Regge equations evaluated on the continuum solutions does not. By directly constructing simplicial solutions for the Kasner cosmology we show that the oscillatory behaviour of the discrepancy between the Einstein and Regge solutions reconciles the apparent conflict between the results of Brewin and those of previous studies. We conclude that solutions of Regge calculus are, in general, expected to be second order accurate approximations to the corresponding continuum solutions.Comment: Updated to match published version. Details of numerical calculations added, several sections rewritten. 9 pages, 4 EPS figure

    The influence of strange quarks on QCD phase diagram and chemical freeze-out: Results from the hadron resonance gas model

    Full text link
    We confront the lattice results on QCD phase diagram for two and three flavors with the hadron resonance gas model. Taking into account the truncations in the Taylor-expansion of energy density ϔ\epsilon done on the lattice at finite chemical potential Ό\mu, we find that the hadron resonance gas model under the condition of constant ϔ\epsilon describes very well the lattice phase diagram. We also calculate the chemical freeze-out curve according to the entropy density ss. The ss-values are taken from lattice QCD simulations with two and three flavors. We find that this condition is excellent in reproducing the experimentally estimated parameters of the chemical freeze-out.Comment: 5 pages, 3 figures and 1 table Talk given at VIIIth international conference on ''Strangeness in Quark Matter'' (SQM 2004), Cape Town, South Africa, Sep. 15-20 200

    Digital curation and the cloud

    Get PDF
    Digital curation involves a wide range of activities, many of which could benefit from cloud deployment to a greater or lesser extent. These range from infrequent, resource-intensive tasks which benefit from the ability to rapidly provision resources to day-to-day collaborative activities which can be facilitated by networked cloud services. Associated benefits are offset by risks such as loss of data or service level, legal and governance incompatibilities and transfer bottlenecks. There is considerable variability across both risks and benefits according to the service and deployment models being adopted and the context in which activities are performed. Some risks, such as legal liabilities, are mitigated by the use of alternative, e.g., private cloud models, but this is typically at the expense of benefits such as resource elasticity and economies of scale. Infrastructure as a Service model may provide a basis on which more specialised software services may be provided. There is considerable work to be done in helping institutions understand the cloud and its associated costs, risks and benefits, and how these compare to their current working methods, in order that the most beneficial uses of cloud technologies may be identified. Specific proposals, echoing recent work coordinated by EPSRC and JISC are the development of advisory, costing and brokering services to facilitate appropriate cloud deployments, the exploration of opportunities for certifying or accrediting cloud preservation providers, and the targeted publicity of outputs from pilot studies to the full range of stakeholders within the curation lifecycle, including data creators and owners, repositories, institutional IT support professionals and senior manager
    • 

    corecore