86,346 research outputs found

    Radio faint AGN: a tale of two populations

    Get PDF
    We study the Extended Chandra Deep Field South (E-CDFS) Very Large Array sample, which reaches a flux density limit at 1.4 GHz of 32.5 microJy at the field centre and redshift ~ 4, and covers ~ 0.3 deg^2. Number counts are presented for the whole sample while the evolutionary properties and luminosity functions are derived for active galactic nuclei (AGN). The faint radio sky contains two totally distinct AGN populations, characterised by very different evolutions, luminosity functions, and Eddington ratios: radio-quiet (RQ)/radiative-mode, and radio-loud/jet-mode AGN. The radio power of RQ AGN evolves ~ (1+z)^2.5, similarly to star-forming galaxies, while the number density of radio-loud ones has a peak at ~ 0.5 and then declines at higher redshifts. The number density of radio-selected RQ AGN is consistent with that of X-ray selected AGN, which shows that we are sampling the same population. The unbiased fraction of radiative-mode RL AGN, derived from our own and previously published data, is a strong function of radio power, decreasing from ~ 0.5 at P_1.4GHz ~ 10^24 W/Hz to ~ 0.04$ at P_1.4GHz ~ 10^22 W/Hz. Thanks to our enlarged sample, which now includes ~ 700 radio sources, we also confirm and strengthen our previous results on the source population of the faint radio sky: star-forming galaxies start to dominate the radio sky only below ~ 0.1 mJy, which is also where radio-quiet AGN overtake radio-loud ones.Comment: 19 pages, 13 figures, accepted for publication in MNRA

    A Chandra Survey of the X-ray Properties of Broad Absorption Line Radio-Loud Quasars

    Full text link
    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from SDSS/FIRST data and possessing a wide range of radio and CIV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. We also include in our sample 9 additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshot and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both disk-corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.Comment: 48 pages, 5 tables, 14 figures, accepted by Ap

    The micro-Jy Radio Source Population: the VLA-CDFS View

    Full text link
    We analyse the 267 radio sources from our deep (flux limit of 42 microJy at the field center at 1.4 GHz) Chandra Deep Field South 1.4 and 5 GHz VLA survey. The radio population is studied by using a wealth of multi-wavelength information, including morphology and spectral types, in the radio, optical, and X-ray bands. The availability of redshifts for ~ 70% of our sources allows us to derive reliable luminosity estimates for the majority of the objects. Contrary to some previous results, we find that star-forming galaxies make up only a minority (~ 1/3) of sub-mJy sources, the bulk of which are faint radio galaxies, mostly of the Fanaroff-Riley I type.Comment: 6 pages, 3 figures, to appear in the proceedings of "At the Edge of the Universe", Sintra, Portugal, Oct. 9 - 13, 200

    The sub-mJy radio sky in the Extended Chandra Deep Field South: source population

    Full text link
    The sub-mJy radio population is a mixture of active systems, that is star forming galaxies (SFGs) and active galactic nuclei (AGNs). We study a sample of 883 radio sources detected at 1.4 GHz in a deep Very Large Array survey of the Extended Chandra Deep Field South (E-CDFS) that reaches a best rms sensitivity of 6 microJy. We have used a simple scheme to disentangle SFGs, radio-quiet (RQ), and radio-loud (RL) AGNs based on the combination of radio data with Chandra X-ray data and mid-infrared observations from Spitzer. We find that at flux densities between about 30 and 100 microJy the radio population is dominated by SFGs (~60%) and that RQ AGNs become increasingly important over RL ones below 100 microJy. We also compare the host galaxy properties of the three classes in terms of morphology, optical colours and stellar masses. Our results show that both SFG and RQ AGN host galaxies have blue colours and late type morphology while RL AGNs tend to be hosted in massive red galaxies with early type morphology. This supports the hypothesis that radio emission in SFGs and RQ AGNs mainly comes from the same physical process: star formation in the host galaxy.Comment: 13 pages, 11 figures, 1 table, accepted for publication in MNRA
    corecore