10 research outputs found

    Relativistic Iron Lines in Galactic Black Holes: Recent Results and Lines in the ASCA Archive

    Full text link
    Recent observations with Chandra and XMM-Newton, aided by broad-band spectral coverage from RXTE, have revealed skewed relativistic iron emission lines in stellar-mass Galactic black hole systems. Such systems are excellent laboratories for testing General Relativity, and relativistic iron lines provide an important tool for making such tests. In this contribution to the Proceedings of the 10th Annual Marcel Grossmann Meeting on General Relativity, we briefly review recent developments and present initial results from fits to archival ASCA observations of Galactic black holes. It stands to reason that relativistic effects, if real, should be revealed in many systems (rather than just one or two); the results of our archival work have borne-out this expectation. The ASCA spectra reveal skewed, relativistic lines in XTE J1550-564, GRO J1655-40, GRS 1915+105, and Cygnus X-1.Comment: to appear in the proc. of the 10th Annual Marcel Grossmann Meeting on General Relativity, 5 pages, 1 figure, uses specific .cls and .sty file

    Chandra/HETGS Spectroscopy of the Galactic Black Hole GX 339-4: A Relativistic Iron Line and Evidence for a Seyfert-like Warm Absorber

    Full text link
    We observed the Galactic black hole GX 339-4 with the Chandra High Energy Transmission Grating Spectrometer (HETGS) for 75 ksec during the decline of its 2002-2003 outburst. The sensitivity of this observation provides an unprecedented glimpse of a Galactic black hole at about a tenth of the luminosity of the outburst peak. The continuum spectrum is well described by a model consisting of multicolor disk blackbody (kT = 0.6 keV) and power-law (Gamma = 2.5) components. X-ray reflection models yield improved fits. A strong, relativistic Fe K-alpha emission line is revealed, indicating that the inner disk extends to the innermost stable circular orbit. The breadth of the line is sufficient to suggest that GX 339-4 may harbor a black hole with significant angular momentum. Absorption lines from H-like and He-like O, and He-like Ne and Mg are detected, as well as lines which are likely due to Ne II and Ne III. The measured line properties make it difficult to associate the absorption with the coronal phase of the interstellar medium. A scenario wherein the absorption lines are due to an intrinsic AGN-like warm-absorber geometry -- perhaps produced by a disk wind in an extended disk-dominated state -- may be more viable. We compare our results to Chandra observations of the Galactic black hole candidate XTE J1650-500, and discuss our findings in terms of prominent models for Galactic black hole accretion flows and connections to supermassive black holes.Comment: 20 pages, 11 postscript figure files (many in color), uses emulateapj.sty and apjfonts.sty, slightly expanded, accepted for publication in Ap

    Evidence for Black Hole Spin in GX 339-4: XMM-Newton EPIC-pn and RXTE Spectroscopy of the Very High State

    Full text link
    We have analyzed spectra of the Galactic black hole GX 339-4 obtained through simultaneous 76 ksec XMM-Newton/EPIC-pn and 10 ksec RXTE observations during a bright phase of its 2002-2003 outburst. An extremely skewed, relativistic Fe K-alpha emission line and ionized disk reflection spectrum are revealed in these spectra. Self-consistent models for the Fe K-alpha emission line profile and disk reflection spectrum rule-out an inner disk radius compatible with a Schwarzschild black hole at more than the 8 sigma level of confidence. The best-fit inner disk radius of 2-3 r_g suggests that GX 339-4 harbors a black hole with a ~ 0.8-0.9 (where r_g = GM/c^2 and a=cJ/GM^2, and assuming that reflection in the plunging region is relatively small). This confirms indications for black hole spin based on a Chandra spectrum obtained later in the outburst. The emission line and reflection spectrum also rule-out a standard power-law disk emissivity in GX 339-4; a broken power-law form with enhanced emissivity inside ~6 r_{g} gives improved fits at more than the 8 sigma level of confidence. The extreme red wing of the line and steep emissivity require a centrally--concentrated source of hard X-rays which can strongly illuminate the inner disk. Hard X-ray emission from the base of a jet - enhanced by gravitational light bending effects - could create the concentrated hard X-ray emission; this process may be related to magnetic connections between the black hole and the inner disk. We discuss these results within the context of recent results from analyses of XTE J1650-500 and MCG-6-30-15, and models for the inner accretion flow environment around black holes.Comment: 5 pages, 2 color figures, uses emulateapj.sty and apjfonts.sty, ApJ Letters, accepte

    Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum

    Full text link

    Chandra/High Energy Transmission Grating Spectrometer spectroscopy of the Galactic black hole GX 339-4: A relativistic iron emission line and evidence for a Seyfert-like warm absorber

    No full text
    We observed the Galactic black hole GX 339 - 4 with the Chandra High Energy Transmission Grating Spectrometer (HETGS) for 75 ks during the decline of its 2002 - 2003 outburst. The sensitivity of this observation provides an unprecedented glimpse of a Galactic black hole at about a tenth of the luminosity of the outburst peak. The continuum spectrum is well described by a model consisting of multicolor disk blackbody (kT similar or equal to 0.6 keV) and power-law (Gamma similar or equal to 2.5) components. X-ray reflection models yield improved fits. A strong, relativistic Fe Kalpha emission line is revealed, indicating that the inner disk extends to the innermost stable circular orbit. The breadth of the line is sufficient to suggest that GX 339 - 4 may harbor a black hole with significant angular momentum. Absorption lines from H- and He-like O and He-like Ne and Mg are detected, as well as lines that are likely due to Ne II and Ne III. The measured line properties make it difficult to associate the absorption with the coronal phase of the interstellar medium. A scenario wherein the absorption lines are due to an intrinsic AGN-like warm-absorber geometry - perhaps produced by a disk wind in an extended disk-dominated state - may be more viable. We compare our results to Chandra observations of the Galactic black hole candidate XTE J1650 - 500 and discuss our findings in terms of prominent models for Galactic black hole accretion flows and connections to supermassive black holes.</p

    Quasinormal modes of black holes and black branes

    No full text
    corecore