9,687 research outputs found
The Tenure Process: A Descriptive Study of Selected Texas Universities
Few things in the professional life of university faculty are more important than the tenure process. Achieving tenure provides the faculty member with the confidence that his or her position with the university will be secure for life. There are exceptions; criminal behavior and elimination of the program come to mind, but tenure allows the faculty member to research controversial areas without the potential for political repercussions that could jeopardize employment. According to the American Association of University Professors: The principal purpose of tenure is to safeguard academic freedom, which is necessary for all who teach and conduct research in higher education. When faculty members can lose their positions because of their speech or publications research findings, they cannot properly fulfill their core responsibilities to advance and transmit knowledge. (2018
A nearly-mlogn time solver for SDD linear systems
We present an improved algorithm for solving symmetrically diagonally
dominant linear systems. On input of an symmetric diagonally
dominant matrix with non-zero entries and a vector such that
for some (unknown) vector , our algorithm computes a
vector such that
{ denotes the A-norm} in time
The solver utilizes in a standard way a `preconditioning' chain of
progressively sparser graphs. To claim the faster running time we make a
two-fold improvement in the algorithm for constructing the chain. The new chain
exploits previously unknown properties of the graph sparsification algorithm
given in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning
properties. We also present an algorithm of independent interest that
constructs nearly-tight low-stretch spanning trees in time
, a factor of faster than the algorithm in
[Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly reflects on the
construction time of the preconditioning chain.Comment: to appear in FOCS1
Exact Computation of a Manifold Metric, via Lipschitz Embeddings and Shortest Paths on a Graph
Data-sensitive metrics adapt distances locally based the density of data
points with the goal of aligning distances and some notion of similarity. In
this paper, we give the first exact algorithm for computing a data-sensitive
metric called the nearest neighbor metric. In fact, we prove the surprising
result that a previously published -approximation is an exact algorithm.
The nearest neighbor metric can be viewed as a special case of a
density-based distance used in machine learning, or it can be seen as an
example of a manifold metric. Previous computational research on such metrics
despaired of computing exact distances on account of the apparent difficulty of
minimizing over all continuous paths between a pair of points. We leverage the
exact computation of the nearest neighbor metric to compute sparse spanners and
persistent homology. We also explore the behavior of the metric built from
point sets drawn from an underlying distribution and consider the more general
case of inputs that are finite collections of path-connected compact sets.
The main results connect several classical theories such as the conformal
change of Riemannian metrics, the theory of positive definite functions of
Schoenberg, and screw function theory of Schoenberg and Von Neumann. We develop
novel proof techniques based on the combination of screw functions and
Lipschitz extensions that may be of independent interest.Comment: 15 page
Faster Approximate Multicommodity Flow Using Quadratically Coupled Flows
The maximum multicommodity flow problem is a natural generalization of the
maximum flow problem to route multiple distinct flows. Obtaining a
approximation to the multicommodity flow problem on graphs is a well-studied
problem. In this paper we present an adaptation of recent advances in
single-commodity flow algorithms to this problem. As the underlying linear
systems in the electrical problems of multicommodity flow problems are no
longer Laplacians, our approach is tailored to generate specialized systems
which can be preconditioned and solved efficiently using Laplacians. Given an
undirected graph with m edges and k commodities, we give algorithms that find
approximate solutions to the maximum concurrent flow problem and
the maximum weighted multicommodity flow problem in time
\tilde{O}(m^{4/3}\poly(k,\epsilon^{-1}))
Iterative Row Sampling
There has been significant interest and progress recently in algorithms that
solve regression problems involving tall and thin matrices in input sparsity
time. These algorithms find shorter equivalent of a n*d matrix where n >> d,
which allows one to solve a poly(d) sized problem instead. In practice, the
best performances are often obtained by invoking these routines in an iterative
fashion. We show these iterative methods can be adapted to give theoretical
guarantees comparable and better than the current state of the art.
Our approaches are based on computing the importances of the rows, known as
leverage scores, in an iterative manner. We show that alternating between
computing a short matrix estimate and finding more accurate approximate
leverage scores leads to a series of geometrically smaller instances. This
gives an algorithm that runs in
time for any , where the term is comparable
to the cost of solving a regression problem on the small approximation. Our
results are built upon the close connection between randomized matrix
algorithms, iterative methods, and graph sparsification.Comment: 26 pages, 2 figure
Fourlined Plant Bug (Hemiptera: Miridae), a Reappraisal: Life History, Host Plants, and Plant Response to Feeding
Phenology of the fourlined plant bug, Poecilocapsus lineatus, is presented for southcen- tral Pennsylvania; life history and habits are re-examined. Although breeding was previously thought to occur only on woody plants, we found that nymphs develop on numerous herbs. An extensive list of hosts, more than 250 species in 57 families, is compiled from the literature and the authors\u27 observations; preferences are noted for plants in the Labiatae, Solanaceae, and Compositae. Damage consists of lesions on foliage, the size and shape of the spots varying with leaf texture, pubescence, and venation. Plant response to feeding is immediately visible, the lesions seeming to appear simultaneously with insertion of the bug\u27s stylets. Histolysis of plant tissues, the most rapid response to mind feeding yet reported, is attributed to a potent lipid enzyme whose active constituents are under investigation
- …