1,086 research outputs found

    DNA analysis of breast tumour fine needle aspirates using flow cytometry.

    Get PDF
    Cellular DNA was analysed by flow cytometry in fine needles aspirates (FNA) from both benign and malignant breast lesions in order to determine the feasibility of flow cytometric analysis. In 22 of 26 (84%) benign and 69 of 74 (93%) malignant aspirates, sufficient cells were present to produce good quality DNA histograms. DNA in all 22 benign lesions was diploid. In contrast, of the 69 cancers with sufficient cells for analysis, 40.6% had a diploid DNA content alone, whilst 59.4% had an additional DNA aneuploid line. These results indicate that the majority of FNAs provide sufficient material for flow cytometric analysis of DNA profiles. Such aspirates taken in a sequential manner may also prove to be an ideal method of studying tumour response to therapy

    Ultrasmall Mixed Eu−Gd Oxide Nanoparticles for Multimodal Fluorescence and Magnetic Resonance Imaging of Passive Accumulation and Retention in TBI

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. TBI can have a long-term impact on the quality of life for survivors of all ages. However, there remains no approved treatment that improves outcomes following TBI, which is partially due to poor delivery of therapies into the brain. Therefore, there is a significant unmet need to develop more effective delivery strategies that increase the accumulation and retention of potentially efficacious treatments in the injured brain. Recent work has revealed that nanoparticles (NPs) may offer a promising approach for site-specific delivery; however, a detailed understanding of the specific NP properties that promote brain accumulation and retention are still being developed. Multimodal imaging plays a vital role in the understanding of physicochemical properties that initiate the uptake and accumulation of NPs in the brain at both high spatial (e.g., fluorescence imaging) and temporal (e.g., magnetic resonance imaging, MRI) frequency. However, many NP systems that are currently used in TBI only provide contrast in a single imaging modality limiting the imaging data that can be obtained, and those that offer multimodal imaging capabilities have complicated multistep synthesis methods. Therefore, the goal of this work was to develop an ultrasmall NP with simple fabrication capable of multimodal imaging. Here, we describe the development, characterization, accumulation, and retention of poly(ethylene glycol) (PEG)-coated europium−gadolinium (Eu−Gd) mixed magnetic NPs (MNPs) in a controlled cortical impact mouse model of TBI. We find that these NPs having an ultrasmall core size of 2 nm and a small hydrodynamic size of 13.5 nm can be detected in both fluorescence and MR imaging modalities and rapidly accumulate and are retained in injured brain parenchyma. These NPs should allow for further testing of NP physicochemical properties that promote accumulation and retention in TBI and other disease models

    Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices

    Full text link
    Graphene has been used recently as a replacement for indium tin oxide (ITO) for the transparent electrode of an organic photovoltaic device. Due to its limited supply, ITO is considered as a limiting factor for the commercialization of organic solar cells. We explored the use of large-area graphene grown on copper by chemical vapor deposition (CVD) and then transferred to a glass substrate as an alternative transparent electrode. The transferred film was shown by scanning Raman spectroscopy measurements to consist of >90% single layer graphene. Optical spectroscopy measurements showed that the layer-transferred graphene has an optical absorbance of 1.23% at a wavelength of 532 nm. We fabricated organic hybrid solar cells utilizing this material as an electrode and compared their performance with ITO devices fabricated using the same procedure. We demonstrated power conversion efficiency up to 3.98%, higher than that of the ITO device (3.86%), showing that layer-transferred graphene promises to be a high quality, low-cost, flexible material for transparent electrodes in solar cell technology.Comment: 6 pages, 3 figure

    Inverse Compton X-rays from relativistic flare electrons and positrons

    Get PDF
    <p><b>Context:</b> In solar flares, inverse Compton scattering (ICS) of photospheric photons might give rise to detectable hard X-ray photon fluxes from the corona where ambient densities are too low for significant bremsstrahlung or recombination. Îł-ray lines and continuum in some large flares imply the presence of the necessary ~100 MeV electrons and positrons, the latter as by-products of GeV energy ions. Recent observations of coronal hard X-ray sources in particular prompt us to reconsider here the possible contribution of ICS.</p> <p><b>Aims:</b> We aim to evaluate the ICS X-ray fluxes to be expected from prescribed populations of relativistic electrons and positrons in the solar corona. The ultimate aim is to determine if ICS coronal X-ray sources might offer a new diagnostic window on relativistic electrons and ions in flares.</p> <p><b>Methods:</b> We use the complete formalism of ICS to calculate X-ray fluxes from possible populations of flare primary electrons and secondary positrons, paying attention to the incident photon angular distribution near the solar surface and thus improving on the assumption of isotropy made in previous solar discussions.</p> <p><b>Results:</b> Both primary electrons and secondary positrons produce very hard ICS X-ray spectra. The anisotropic primary radiation field results in pronounced centre-to-limb variation in predicted fluxes and spectra, with the most intense spectra, extending to the highest photon energies, expected from limb flares. Acceptable numbers of electrons or positrons could account for RHESSI coronal X/Îł-ray sources.</p> <p><b>Conclusions:</b> Some coronal X-ray sources at least might be interpreted in terms of ICS by relativistic electrons or positrons, particularly when sources appear at such low ambient densities that bremsstrahlung appears implausible.</p&gt
    • 

    corecore