105,333 research outputs found

    Route planning in a four-dimensional environment

    Get PDF
    Robots must be able to function in the real world. The real world involves processes and agents that move independently of the actions of the robot, sometimes in an unpredictable manner. A real-time integrated route planning and spatial representation system for planning routes through dynamic domains is presented. The system will find the safest most efficient route through space-time as described by a set of user defined evaluation functions. Because the route planning algorthims is highly parallel and can run on an SIMD machine in O(p) time (p is the length of a path), the system will find real-time paths through unpredictable domains when used in an incremental mode. Spatial representation, an SIMD algorithm for route planning in a dynamic domain, and results from an implementation on a traditional computer architecture are discussed

    Single-level resonance parameters fit nuclear cross-sections

    Get PDF
    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total

    Modem design for a MOBILESAT terminal

    Get PDF
    The implementation is described of a programmable digital signal processor based system, designed for use as a test bed in the development of a digital modem, codec, and channel simulator. Code was written to configure the system as a 5600 bps or 6600 bps QPSK modem. The test bed is currently being used in an experiment to evaluate the performance of digital speech over shadowed channels in the Australian mobile satellite (MOBILESAT) project

    Composition profiling InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunnelling microscopy

    Get PDF
    This study compares cross-sectional scanning tunnelling microscopy (XSTM) and atom probe tomography (APT). We use epitaxially grown self-assembled InAs quantum dots (QDs) in GaAs as an exemplary material with which to compare these two nanostructural analysis techniques. We studied the composition of the wetting layer and the QDs, and performed quantitative comparisons of the indium concentration profiles measured by each method. We show that computational models of the wetting layer and the QDs, based on experimental data, are consistent with both analytical approaches. This establishes a link between the two techniques and shows their complimentary behaviour, an advantage which we exploit in order to highlight unique features of the examined QD material.Comment: Main article: 8 pages, 6 figures. Appendix: 3 pages, 5 figure

    Return of the EMC Effect: Finite Nuclei

    Full text link
    A light front formalism for deep inelastic lepton scattering from finite nuclei is developed. In particular, the nucleon plus momentum distribution and a finite system analog of the Hugenholtz-van Hove theorem are presented. Using a relativistic mean field model, numerical results for the plus momentum distribution and ratio of bound to free nucleon structure functions for Oxygen, Calcium and Lead are given. We show that we can incorporate light front physics with excellent accuracy while using easily computed equal time wavefunctions. Assuming nucleon structure is not modified in-medium we find that the calculations are not consistent with the binding effect apparent in the data not only in the magnitude of the effect, but in the dependence on the number of nucleons.Comment: 11 pages, 6 figure

    Techniques for the Synthesis of Reversible Toffoli Networks

    Get PDF
    This paper presents novel techniques for the synthesis of reversible networks of Toffoli gates, as well as improvements to previous methods. Gate count and technology oriented cost metrics are used. Our synthesis techniques are independent of the cost metrics. Two new iterative synthesis procedure employing Reed-Muller spectra are introduced and shown to complement earlier synthesis approaches. The template simplification suggested in earlier work is enhanced through introduction of a faster and more efficient template application algorithm, updated (shorter) classification of the templates, and presentation of the new templates of sizes 7 and 9. A novel ``resynthesis'' approach is introduced wherein a sequence of gates is chosen from a network, and the reversible specification it realizes is resynthesized as an independent problem in hopes of reducing the network cost. Empirical results are presented to show that the methods are effective both in terms of the realization of all 3x3 reversible functions and larger reversible benchmark specifications.Comment: 20 pages, 5 figure

    A Low Noise Receiver for Submillimeter Astronomy

    Get PDF
    A broadband, low noise heterodyne receiver, suitable for astronomical use, has been built using a Pb alloy superconducting tunnel junction (SIS). The RF coupling is quasioptical via a bowtie antenna on a quartz lens and is accomplished without any tuning elements. In its preliminary version the double sideband receiver noise temperature rises from 205 K at 116 GHz to 815 K at 466 GHz. This is the most sensitive broadband receiver yet reported for sub-mm wavelengths. Its multi-octave sensitivity and low local oscillator power requirements make this receiver ideal for remote ground observatories or space-borne telescopes such as NASA's Large Deployable Reflector. A version of this receiver is now being built for NASA's Kuiper Airborne Observatory

    Atomic spectroscopy with the shock tube

    Get PDF
    Spectroscopy of light atoms and ions and transition probability determinations using gas-driven shock tub

    The behavior of the electron density and temperatue at Millstone Hill during the equinox transition study September 1984

    Get PDF
    The ionospheric electron density and temperature variations is simulated during the equinox transition study in September 1984 and the results are compared with measurements made at Millstone Hill. The agreement between the modeled and measured electron density and temperature for the quiet day (18 September) is very good but there are large differences on the day of the storm (19 September). On the storm day, the measured electron density decreases by a factor of 1.7 over the previous day, while the model density actually increases slightly. The model failure is attributed to an inadequate increase in the ratio of atomic oxygen to molecular neutral densities in the MSIS neutral atmosphere model, for this particular storm. A factor of 3 to 5 increase in the molecular to atomic oxygen density ratio at 300 km is needed to explain the observed decrease in electron density. The effect of vibrationally excited N sub 2 on the electron density were studied and found to be small
    corecore