2,001 research outputs found

    Phase behavior of repulsive polymer-tethered colloids

    Full text link
    We report molecular dynamics simulations of a system of repulsive, polymer-tethered colloidal particles. We use an explicit polymer model to explore how the length and the behavior of the polymer (ideal or self-avoiding) affect the ability of the particles to organize into ordered structures when the system is compressed to moderate volume fractions. We find a variety of different phases whose origin can be explained in terms of the configurational entropy of polymers and colloids. Finally, we discuss and compare our results to those obtained for similar systems using simplified coarse-grained polymer models, and set the limits of their applicability.Comment: 7 pages, 5 figures. Published in the Journal of Chemical Physic

    A Quasi-Classical Mapping Approach to Vibrationally Coupled Electron Transport in Molecular Junctions

    Full text link
    We develop a classical mapping approach suitable to describe vibrationally coupled charge transport in molecular junctions based on the Cartesian mapping for many-electron systems [J. Chem. Phys. 137, 154107 (2012)]. To properly describe vibrational quantum effects in the transport characteristics, we introduce a simple transformation rewriting the Hamiltonian in terms of occupation numbers and use a binning function to facilitate quantization. The approach provides accurate results for the nonequilibrium Holstein model for a range of bias voltages, vibrational frequencies and temperatures. It also captures the hallmarks of vibrational quantum effects apparent in step-like structure in the current-voltage characteristics at low temperatures as well as the phenomenon of Franck-Condon blockade.Comment: 8 pages, 3 figure

    Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting

    Get PDF
    The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting

    Notes of a Meeting Held in the Diplomatic Reception Room of the Department of State on Monday, March 20, 1911

    Get PDF
    The document is a carbon transcript of notes from a meeting held in the State Department respecting the necessity of more such meetings, the present organization of the Department, expenditures, and esprit de corps. Present at the meeting were: The Assistant Secretaries, the Solicitor, the Director of the Consular Service, the Chief Clerk and the Chiefs and Assistant Chiefs of the Divisions and Bureaus of the Department.https://digitalcommons.ursinus.edu/fmhw_speeches/1004/thumbnail.jp

    The Globular Cluster Systems in the Coma Ellipticals. II: Metallicity Distribution and Radial Structure in NGC 4874, and Implications for Galaxy Formation

    Full text link
    Deep HST/WFPC2 (V,I) photometry is used to investigate the globular cluster system (GCS) in NGC 4874, the central cD galaxy of the Coma cluster. The luminosity function of the clusters displays its normal Gaussian-like shape and turnover level. Other features of the system are surprising: the GCS is (a) spatially extended, with core radius r_c = 22 kpc, (b) entirely metal-poor (a narrow, unimodal metallicity distribution with mean [Fe/H] = -1.5), and (c) modestly populated, with specific frequency S_N = 3.7 +- 0.5. We suggest on the basis of some simple models that as much as half of this galaxy might have accreted from low-mass satellites, but no single one of the three classic modes of galaxy formation (accretion, disk mergers, in situ formation) can supply a fully satisfactory formation picture. Even when they are used in combination, strong challenges to these models remain. The principal anomaly in this GCS is essentially the complete lack of metal-rich clusters. If these were present in normal (M87-like) numbers in addition to the metal-poor ones that are already there, then the GCS in total would more closely resemble what we see in many other giant E galaxies.Comment: 27 pp. with 9 Figures. Astrophys.J. 533, in press (April 10, 2000

    Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer

    Get PDF
    Introduction Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach. Methods Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39). Results Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1). Conclusions These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response

    The Otterbein Miscellany - May 1971

    Get PDF
    https://digitalcommons.otterbein.edu/miscellany/1000/thumbnail.jp

    Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    Get PDF
    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 ??C with record-high surface area (4073 m2 g-1), large pore volume (2.26 cm-3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.clos
    corecore