71,293 research outputs found

    Quasicontinuum Models of Interfacial Structure and Deformation

    Get PDF
    Microscopic models of the interaction between grain boundaries (GBs) and both dislocations and cracks are of importance in understanding the role of microstructure in altering the mechanical properties of a material. A recently developed mixed atomistic and continuum method is extended to examine the interaction between GBs, dislocations and cracks. These calculations elucidate plausible microscopic mechanisms for these defect interactions and allow for the quantitative evaluation of critical parameters such as the stress to nucleate a dislocation at a step on a GB and the force needed to induce GB migration.Comment: RevTex, 4 pages, 4 figure

    Extended Feynman Formula for the Harmonic Oscillator by the Discrete Time Method

    Full text link
    We calculate the Feynman formula for the harmonic oscillator beyond and at caustics by the discrete formulation of path integral. The extension has been made by some authors, however, it is not obtained by the method which we consider the most reliable regularization of path integral. It is shown that this method leads to the result with, especially at caustics, more rigorous derivation than previous.Comment: 9 page

    Simulation of electron transport in quantum well devices

    Get PDF
    Double barrier resonant tunneling diodes (DBRTD) have received much attention as possible terahertz devices. Despite impressive experimental results, the specifics of the device physics (i.e., how the electrons propagate through the structure) are only qualitatively understood. Therefore, better transport models are warranted if this technology is to mature. In this paper, the Lattice Wigner function is used to explain the important transport issues associated with DBRTD device behavior

    Synchronization of dynamical hypernetworks: dimensionality reduction through simultaneous block-diagonalization of matrices

    Full text link
    We present a general framework to study stability of the synchronous solution for a hypernetwork of coupled dynamical systems. We are able to reduce the dimensionality of the problem by using simultaneous block-diagonalization of matrices. We obtain necessary and sufficient conditions for stability of the synchronous solution in terms of a set of lower-dimensional problems and test the predictions of our low-dimensional analysis through numerical simulations. Under certain conditions, this technique may yield a substantial reduction of the dimensionality of the problem. For example, for a class of dynamical hypernetworks analyzed in the paper, we discover that arbitrarily large networks can be reduced to a collection of subsystems of dimensionality no more than 2. We apply our reduction techique to a number of different examples, including a class of undirected unweighted hypermotifs of three nodes.Comment: 9 pages, 6 figures, accepted for publication in Phys. Rev.

    Dissipationless Anomalous Hall Current in the Ferromagnetic Spinel CuCr2_2Se4x_{4-x}Brx_x

    Full text link
    In a ferromagnet, an applied electric field E\bf E invariably produces an anomalous Hall current JH{\bf J}_H that flows perpendicular to the plane defined by E\bf E and M\bf M (the magnetization). For decades, the question whether JH{\bf J}_H is dissipationless (independent of the scattering rate), has been keenly debated without experimental resolution. In the ferromagnetic spinel CuCr2_2Se4x_{4-x}Brx_x, the resistivity ρ\rho (at low temperature) may be increased 1000 fold by varying xx(Br), without degrading the M\bf M. We show that JH/E{\bf J}_H/E (normalized per carrier, at 5 K) remains unchanged throughout. In addition to resolving the controversy experimentally, our finding has strong bearing on the generation and study of spin-Hall currents in bulk samples.Comment: 7 pages, 6 figure

    Magnetized Iron Atmospheres for Neutron Stars

    Full text link
    Using a Hartree-Fock formalism, we estimate energy levels and photon cross sections for atomic iron in magnetic fields B ~ 10^13 G. Computing ionization equilibrium and normal mode opacities with these data, we construct LTE neutron star model atmospheres at 5.5 < Log(T_eff) < 6.5 and compute emergent spectra. We examine the dependence of the emergent spectra on T_eff and B. We also show the spectral variation with the angle between the magnetic field and the atmosphere normal and describe the significant limb darkening in the X-ray band. These results are compared with recent detailed computations of neutron star H model atmospheres in high fields and with low field Fe and H model atmospheres constructed from detailed opacities. The large spectral differences for different surface compositions may be discernible with present X-ray data; we also note improvements needed to allow comparison of Fe models with high quality spectra.Comment: 18 pages with 5 eps figures, accepted for publication in ApJ Replaced due to clerical error only: one more author, no new conten
    corecore