13,610 research outputs found

    Editorial for the launch of Addictive Behaviors Reports

    Get PDF
    We are pleased to welcome you to the launch of Addictive Behaviors Reports, a new online only, open-access and peer reviewed journal offering an interdisciplinary forum for the publication of research in addictive behaviors. Addictive Behaviors Reports accepts submissions that are scientifically sound on all forms of addictive behavior (such as alcohol, drugs, gambling, nicotine and technology) with a primary focus on behavioral and psycho-social research. The emphasis of the journal is primarily empirical. That is, sound experimental design combined with valid, reliable assessment and evaluation procedures are a requisite for acceptance

    Fractional Cauchy problems on bounded domains: survey of recent results

    Full text link
    In a fractional Cauchy problem, the usual first order time derivative is replaced by a fractional derivative. This problem was first considered by \citet{nigmatullin}, and \citet{zaslavsky} in Rd\mathbb R^d for modeling some physical phenomena. The fractional derivative models time delays in a diffusion process. We will give a survey of the recent results on the fractional Cauchy problem and its generalizations on bounded domains D\subset \rd obtained in \citet{m-n-v-aop, mnv-2}. We also study the solutions of fractional Cauchy problem where the first time derivative is replaced with an infinite sum of fractional derivatives. We point out a connection to eigenvalue problems for the fractional time operators considered. The solutions to the eigenvalue problems are expressed by Mittag-Leffler functions and its generalized versions. The stochastic solution of the eigenvalue problems for the fractional derivatives are given by inverse subordinators

    Nutritional strategies to reduce enteric methane emissions

    Get PDF

    Nutritional strategies to reduce enteric methane emissions

    Get PDF

    Defect Tolerance to Intolerance in the Vacancy-Ordered Double Perovskite Semiconductors Cs2SnI6 and Cs2TeI6.

    Get PDF
    Vacancy-ordered double perovskites of the general formula A2BX6 are a family of perovskite derivatives composed of a face-centered lattice of nearly isolated [BX6] units with A-site cations occupying the cuboctahedral voids. Despite the presence of isolated octahedral units, the close-packed iodide lattice provides significant electronic dispersion, such that Cs2SnI6 has recently been explored for applications in photovoltaic devices. To elucidate the structure-property relationships of these materials, we have synthesized solid-solution Cs2Sn1-xTexI6. However, even though tellurium substitution increases electronic dispersion via closer I-I contact distances, the substitution experimentally yields insulating behavior from a significant decrease in carrier concentration and mobility. Density functional calculations of native defects in Cs2SnI6 reveal that iodine vacancies exhibit a low enthalpy of formation, and that the defect energy level is a shallow donor to the conduction band rendering the material tolerant to these defect states. The increased covalency of Te-I bonding renders the formation of iodine vacancy states unfavorable and is responsible for the reduction in conductivity upon Te substitution. Additionally, Cs2TeI6 is intolerant to the formation of these defects, because the defect level occurs deep within the band gap and thus localizes potential mobile charge carriers. In these vacancy-ordered double perovskites, the close-packed lattice of iodine provides significant electronic dispersion, while the interaction of the B- and X-site ions dictates the properties as they pertain to electronic structure and defect tolerance. This simplified perspective based on extensive experimental and theoretical analysis provides a platform from which to understand structure-property relationships in functional perovskite halides

    An Alternative Method for Solving a Certain Class of Fractional Kinetic Equations

    Full text link
    An alternative method for solving the fractional kinetic equations solved earlier by Haubold and Mathai (2000) and Saxena et al. (2002, 2004a, 2004b) is recently given by Saxena and Kalla (2007). This method can also be applied in solving more general fractional kinetic equations than the ones solved by the aforesaid authors. In view of the usefulness and importance of the kinetic equation in certain physical problems governing reaction-diffusion in complex systems and anomalous diffusion, the authors present an alternative simple method for deriving the solution of the generalized forms of the fractional kinetic equations solved by the aforesaid authors and Nonnenmacher and Metzler (1995). The method depends on the use of the Riemann-Liouville fractional calculus operators. It has been shown by the application of Riemann-Liouville fractional integral operator and its interesting properties, that the solution of the given fractional kinetic equation can be obtained in a straight-forward manner. This method does not make use of the Laplace transform.Comment: 7 pages, LaTe

    Association of Over-The-Counter Pharmaceutical Sales with Influenza-Like-Illnesses to Patient Volume in an Urgent Care Setting

    Get PDF
    We studied the association between OTC pharmaceutical sales and volume of patients with influenza-like-illnesses (ILI) at an urgent care center over one year. OTC pharmaceutical sales explain 36% of the variance in the patient volume, and each standard deviation increase is associated with 4.7 more patient visits to the urgent care center (p<0.0001). Cross-correlation function analysis demonstrated that OTC pharmaceutical sales are significantly associated with patient volume during non-flu season (p<0.0001), but only the sales of cough and cold (p<0.0001) and thermometer (p<0.0001) categories were significant during flu season with a lag of two and one days, respectively. Our study is the first study to demonstrate and measure the relationship between OTC pharmaceutical sales and urgent care center patient volume, and presents strong evidence that OTC sales predict urgent care center patient volume year round. © 2013 Liu et al

    Mass-independent fractionation of oxygen isotopes during thermal decomposition of divalent metal carbonates: Crystallographic influence, potential mechanism and cosmochemical significance

    Get PDF
    Few physical or chemical processes defy well-established laws of mass-dependent isotopic fractionation. A surprising example, discovered two decades ago, is that thermal decomposition of calcium and magnesium carbonate minerals (conducted in vacuo, to minimise back-reaction and isotopic exchange) causes the oxygen triple-isotope compositions of the resulting solid oxide and CO2 to fit on parallel mass-dependent fractionation lines in ln(1 + δ17O) versus ln(1 + δ18O) space, with anomalous depletion of 17O in the solid and equivalent enrichment of 17O in the CO2. By investigating the thermal decomposition of other natural divalent metal carbonates and one synthetic example, under similar conditions, we find that the unusual isotope effect occurs in all cases and that the magnitude of the anomaly (Δ′17O) seems to depend on the room temperature crystallographic structure of the carbonate. A lower cation coordination number (as associated with smaller cation radius) correlates with a Δ′17O value closer to zero. Local symmetry considerations may therefore be influential. Relative to a reference fractionation line of slope 0.524 and passing through VSMOW, solid oxides produced by thermal decomposition of orthorhombic carbonates were characterised by Δ′17O = −0.367 ± 0.004‰ (standard error). The comparable figure from rhombohedral examples was −0.317 ± 0.010‰, whereas from the sole monoclinic (synthesised) specimen it was −0.219 ± 0.011‰. The numerical values are, to some extent, dependent on details of the experimental procedure. We discuss potential origins of the isotopic anomaly, including the possibility of hyperfine coupling between 17O nuclei and unpaired electrons of transient radicals (the ‘magnetic isotope effect’). A new mechanism based on the latter process is proposed. The associated transition state is compatible with that suggested by recent quantum chemical and kinetic studies of the thermal decompositions of calcite and magnesite. An earlier suggestion based on the magnetic isotope effect is shown to be incompatible with the generation of a 17O anomaly, regardless of the identity of the carbonate. We cannot exclude the possibility that a Fermi resonance between states leading to dissociation may additionally affect the magnitude of Δ′17O in some cases. Our findings have cosmochemical implications, with thermal processing of carbonates providing a potential mechanism for the mass-independent fractionation of oxygen isotopes in protoplanetary systems

    Reproducibility and intraindividual variation over days in buccal cell DNA methylation of two asthma genes, interferon γ (IFNγ) and inducible nitric oxide synthase (iNOS)

    Get PDF
    The biological mechanisms responsible for the onset and exacerbation of asthma symptoms in children may involve the epigenetic regulation of inflammatory genes after environmental exposures. Using buccal cells, we hypothesized that DNA methylation in promoter regions of two asthma genes, inducible nitric oxide synthase (iNOS) and interferon γ (IFNγ), can vary over several days. Repeat buccal samples were collected 4 to 7 days apart from 34 children participating in the Columbia Center for Children's Environmental Health (CCCEH) birth cohort study. Several field duplicates (sequential collection of two samples in the field) and replicates (one sample pyrosequenced twice) also were collected to ensure consistency with collection and laboratory procedures. DNA methylation was assessed by pyrosequencing a PCR of bisulfite-treated DNA. We found that replicate and field duplicate samples were correlated strongly (r = 0.86 to 0.99, P < 0.05), while repeat samples demonstrated low within-subject correlations (r = 0.19 to 0.56, P = 0.06 to 0.30). Our data reveal DNA methylation as a dynamic epigenetic mechanism that can be accessed safely and reproducibly in an inner city pediatric cohort using non-invasive buccal swabs and pyrosequencing technology
    • …
    corecore