3,100 research outputs found

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for gas-phase temperature measurements

    Get PDF
    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is employed for quantitative gas-phase temperature measurements in combustion processes and heated flows. In this approach, ultrafast 100-fs laser pulses are used to induce vibrational and rotational transitions in N2 and O2, while a third spectrally narrowed picosecond pulse is used to probe the molecular response. Temporal suppression of the nonresonant contribution and elimination of collisional effects are achieved by delay of the probe pulse, while sufficient spectral resolution is maintained for frequency-domain detection and thermometry. A theoretical framework is developed to model experimental spectra by phenomenologically describing the temporal evolution of the vibrational and rotational wavepackets as a function of temperature and pressure. Interference-free, single-shot vibrational fs/ps CARS thermometry is demonstrated at 1-kHz from 1400-2400 K in a H2-air flame, with accuracy better than 3%. A time-asymmetric exponential pulse shape is introduced to optimize nonresonant suppression with a 103 reduction at a probe delay of 0.31 ps. Low-temperature single-shot thermometry (300-700 K) with better than 1.5% accuracy is demonstrated using a fully degenerate rotational fs/ps CARS scheme, and the influence of collision energy transfer on thermometry error is quantified at atmospheric pressure. Interference-free thermometry, without nonresonant contributions and collision-induced error, is demonstrated for the first time using rotational fs/ps CARS at room temperature and pressures from 1-15 atm. Finally, the temporal and spectral resolution of fs/ps CARS is exploited for transition-resolved time-domain measurements of N2 and O2 self-broadened S-branch Raman linewidths at pressures of 1-20 atm

    Material Coefficient of Thermal Expansion Investigation for Use in Additive Manufacturing Fused Deposition Modeling for Composite Tooling

    Get PDF
    Polymer matrix composites are being used to manufacture light weight, high stiffness aircraft structures. These structures are often manufactured from carbon fiber reinforced epoxy. When these structures are damaged, they must be repaired to restore strength to the component to avoid the cost and logistics of having replacements parts. Occasionally, these repairs require tooling in order to make a quality repair, however, tooling generally has a long lead time. Additive manufacturing could be used to manufacture rapid tooling to create tooling for composite repairs. The issue is that polymer printed tooling has a much higher coefficient of thermal expansion (CTE) than the composites that are being cured on them. This research investigates the addition of negative CTE fillers in polymers to reduce CTE to more closely match composites to reduce CTE mismatch and part distortion during elevated temperature cure

    Dyno-Mite Redesign

    Get PDF
    The Cal Poly Mechanical Control Systems Laboratory currently employs an outdated device, known as the Motomatic, to teach students about various motor characteristics and control methods. These include open-loop vs. closed-loop control, speed vs. position control, and DC motor response curves. The current device does not function properly and produces unreliable data due to overwhelming non-linear effects such as stiction and shaft misalignment. Our team was tasked with designing a replacement device that retains many of the same educational goals as the original lab procedure, while also adding new educational goals pertaining to the device system dynamics. The new apparatus, dubbed the Dyno-Mite is a one tenth scale tire testing machine, incorporating two DC brushed motors, adjustable mechanisms, and load cell measuring devices. The design will also pay special attention to modularity so that future adjustments and modifications can be made to the lab apparatus, allowing for instructors to tailor the machine to meet their specific educational goals

    Grist: Grid-based Data Mining for Astronomy

    Get PDF
    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a work ow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the "hyperatlas" project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization
    corecore