718 research outputs found

    Cavity cooling a single charged nanoparticle

    Full text link
    The development of laser cooling coupled with the ability to trap atoms and ions in electromagnetic fields, has revolutionised atomic and optical physics, leading to the development of atomic clocks, high-resolution spectroscopy and applications in quantum simulation and processing. However, complex systems, such as large molecules and nanoparticles, lack the simple internal resonances required for laser cooling. Here we report on a hybrid scheme that uses the external resonance of an optical cavity, combined with radio frequency (RF) fields, to trap and cool a single charged nanoparticle. An RF Paul trap allows confinement in vacuum, avoiding instabilities that arise from optical fields alone, and crucially actively participates in the cooling process. This system offers great promise for cooling and trapping a wide range of complex charged particles with applications in precision force sensing, mass spectrometry, exploration of quantum mechanics at large mass scales and the possibility of creating large quantum superpositions.Comment: 8 pages, 5 figures Updated version includes additional references, new title, and supplementary information include

    Optomechanical cooling of levitated spheres with doubly-resonant fields

    Full text link
    Optomechanical cooling of levitated dielectric particles represents a promising new approach in the quest to cool small mechanical resonators towards their quantum ground state. We investigate two-mode cooling of levitated nanospheres in a self-trapping regime. We identify a rich structure of split sidebands (by a mechanism unrelated to usual strong-coupling effects) and strong cooling even when one mode is blue detuned. We show the best regimes occur when both optical fields cooperatively cool and trap the nanosphere, where cooling rates are over an order of magnitude faster compared to corresponding single-sideband cooling rates.Comment: 8 Pages, 7 figure

    Dynamics of levitated nanospheres: towards the strong coupling regime

    Get PDF
    The use of levitated nanospheres represents a new paradigm for the optomechanical cooling of a small mechanical oscillator, with the prospect of realising quantum oscillators with unprecedentedly high quality factors. We investigate the dynamics of this system, especially in the so-called self-trapping regimes, where one or more optical fields simultaneously trap and cool the mechanical oscillator. The determining characteristic of this regime is that both the mechanical frequency ωM\omega_M and single-photon optomechanical coupling strength parameters gg are a function of the optical field intensities, in contrast to usual set-ups where ωM\omega_M and gg are constant for the given system. We also measure the characteristic transverse and axial trapping frequencies of different sized silica nanospheres in a simple optical standing wave potential, for spheres of radii r=20−500r=20-500\,nm, illustrating a protocol for loading single nanospheres into a standing wave optical trap that would be formed by an optical cavity. We use this data to confirm the dependence of the effective optomechanical coupling strength on sphere radius for levitated nanospheres in an optical cavity and discuss the prospects for reaching regimes of strong light-matter coupling. Theoretical semiclassical and quantum displacement noise spectra show that for larger nanospheres with r≳100r \gtrsim 100\,nm a range of interesting and novel dynamical regimes can be accessed. These include simultaneous hybridization of the two optical modes with the mechanical modes and parameter regimes where the system is bistable. We show that here, in contrast to typical single-optical mode optomechanical systems, bistabilities are independent of intracavity intensity and can occur for very weak laser driving amplitudes

    Multiple Tyrosine Residues Contribute to GABA Binding in the GABA_C Receptor Binding Pocket

    Get PDF
    The ligand binding site of Cys-loop receptors is dominated by aromatic amino acids. In GABA_C receptors, these are predominantly tyrosine residues, with a number of other aromatic residues located in or close to the binding pocket. Here we examine the roles of these residues using substitution with both natural and unnatural amino acids followed by functional characterization. Tyr198 (loop B) has previously been shown to form a cation−π interaction with GABA; the current data indicate that none of the other aromatic residues form such an interaction, although the data indicate that both Tyr102 and Phe138 may contribute to stabilization of the positively charged amine of GABA. Tyr247 (loop C) was very sensitive to substitution and, combined with data from a model of the receptor, suggest a π–π interaction with Tyr241 (loop C); here again functional data show aromaticity is important. In addition the hydroxyl group of Tyr241 is important, supporting the presence of a hydrogen bond with Arg104 suggested by the model. At position Tyr102 (loop D) size and aromaticity are important; this residue may play a role in receptor gating and/or ligand binding. The data also suggest that Tyr167, Tyr200, and Tyr208 have a structural role while Tyr106, Trp246, and Tyr251 are not critical. Comparison of the agonist binding site “aromatic box” across the superfamily of Cys-loop receptors reveals some interesting parallels and divergences

    Brownian Carnot engine

    Get PDF
    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro-engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Despite its potential relevance for the development of a thermodynamics of small systems, an experimental study of microscopic Carnot engines is still lacking. Here we report on an experimental realization of a Carnot engine with a single optically trapped Brownian particle as working substance. We present an exhaustive study of the energetics of the engine and analyze the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency -an insight that could inspire novel strategies in the design of efficient nano-motors.Comment: 7 pages, 7 figure

    Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

    Full text link
    Einstein realised that the fluctuations of a Brownian particle can be used to ascertain properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics, and leading to applications from energy harvesting to medical imaging. Here we use optically levitated nanospheres that are heated to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers new opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and a new means for testing non-equilibrium thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques
    • 

    corecore