6 research outputs found

    Prediction of cold flow properties of Biodiesel

    Get PDF
    Biodiesel being environmentally friendly is fast gaining acceptance in the market as an alternate diesel fuel. But compared to petroleum diesel it has certain limitations and thus it requires further development on economic viability and improvement in its properties to use it as a commercial fuel. The cold flow properties play a major role in the usage of biodiesel commercially as it freezes at cold climatic conditions. In the present study, cold flow properties of various types of biodiesel were estimated by using correlations available in literature. The correlations were evaluated based on the deviation between the predicted value and experimental values of cold flow properties

    Thermodynamic analysis and heat integration for hydrogen production from bio-butanol for SOFC application: Steam reforming vs. autothermal reforming

    No full text
    <p>Thermodynamic analysis of hydrogen production by steam reforming and autothermal reforming of bio-butanol was investigated for solid oxide fuel cell applications. The effects of reformer operating conditions, e.g., reformer temperature, steam to carbon molar ratio, and oxygen to carbon molar ratio, were investigated with the objective to maximize hydrogen production and to reduce utility requirements of the process and based on which favorable conditions of reformer were proposed. Process flow diagram for steam reforming and autothermal reforming integrated with solid oxide fuel cell was developed. Heat integration with pinch analysis method was carried out for both the processes at favorable reformer conditions. Power generation, electrical efficiency, useful energy for co-generation application, and utility requirements for both the processes were compared.</p

    Proceedings of the International Conference on Frontiers in Desalination, Energy, Environment and Material Sciences for Sustainable Development

    No full text
    This proceeding contains articles on the various ideas of the academic community presented at the International Conference on Frontiers in Desalination, Energy, Environment and Material Sciences for Sustainable Development (FEEMSSD-2023) &amp; Annual Congress of InDA (InDACON-2023) jointly organized by the Madan Mohan Malaviya University of Technology Gorakhpur, KIPM-College of Engineering and Technology Gida Gorakhpur, and Indian Desalination Association, India on 16th-17th March 2023.  FEEMSSD-2023 &amp; InDACON-2023 focuses on addressing issues and concerns related to sustainability in all domains of Energy, Environment, Desalination, and Material Science and attempts to present the research and innovative outputs in a global platform. The conference aims to bring together leading academicians, researchers, technocrats, practitioners, and students to exchange and share their experiences and research outputs in Energy, Environment, Desalination, and Material Science.  Conference Title: International Conference on Frontiers in Desalination, Energy, Environment and Material Sciences for Sustainable Development &amp; Annual Congress of InDAConference Acronyms: FEEMSSD-2023 &amp; InDACON-2023Conference Date: 16th-17th March 2023Conference Location: Madan Mohan Malaviya University of Technology, GorakhpurConference Organizers: Madan Mohan Malaviya University of Technology Gorakhpur, KIPM-College of Engineering and Technology Gida Gorakhpur, and Indian Desalination Association, Indi
    corecore