1,580 research outputs found

    CONTEST : a Controllable Test Matrix Toolbox for MATLAB

    Get PDF
    Large, sparse networks that describe complex interactions are a common feature across a number of disciplines, giving rise to many challenging matrix computational tasks. Several random graph models have been proposed that capture key properties of real-life networks. These models provide realistic, parametrized matrices for testing linear system and eigenvalue solvers. CONTEST (CONtrollable TEST matrices) is a random network toolbox for MATLAB that implements nine models. The models produce unweighted directed or undirected graphs; that is, symmetric or unsymmetric matrices with elements equal to zero or one. They have one or more parameters that affect features such as sparsity and characteristic pathlength and all can be of arbitrary dimension. Utility functions are supplied for rewiring, adding extra shortcuts and subsampling in order to create further classes of networks. Other utilities convert the adjacency matrices into real-valued coefficient matrices for naturally arising computational tasks that reduce to sparse linear system and eigenvalue problems

    Characterization and control of small-world networks

    Get PDF
    Recently Watts and Strogatz have given an interesting model of small-world networks. Here we concretise the concept of a ``far away'' connection in a network by defining a {\it far edge}. Our definition is algorithmic and independent of underlying topology of the network. We show that it is possible to control spread of an epidemic by using the knowledge of far edges. We also suggest a model for better advertisement using the far edges. Our findings indicate that the number of far edges can be a good intrinsic parameter to characterize small-world phenomena.Comment: 9 pages and 6 figure

    Greedy Connectivity of Geographically Embedded Graphs

    Full text link
    We introduce a measure of {\em greedy connectivity} for geographical networks (graphs embedded in space) and where the search for connecting paths relies only on local information, such as a node's location and that of its neighbors. Constraints of this type are common in everyday life applications. Greedy connectivity accounts also for imperfect transmission across established links and is larger the higher the proportion of nodes that can be reached from other nodes with a high probability. Greedy connectivity can be used as a criterion for optimal network design

    Modeling self-organization of communication and topology in social networks

    Full text link
    This paper introduces a model of self-organization between communication and topology in social networks, with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, a global loss is inevitable in a system with too many liarsComment: 6 pages 7 figures, Java simulation available at http://cmol.nbi.dk/models/inforew/inforew.htm

    Mean-field solution of the small-world network model

    Full text link
    The small-world network model is a simple model of the structure of social networks, which simultaneously possesses characteristics of both regular lattices and random graphs. The model consists of a one-dimensional lattice with a low density of shortcuts added between randomly selected pairs of points. These shortcuts greatly reduce the typical path length between any two points on the lattice. We present a mean-field solution for the average path length and for the distribution of path lengths in the model. This solution is exact in the limit of large system size and either large or small number of shortcuts.Comment: 14 pages, 2 postscript figure

    Epidemics and percolation in small-world networks

    Full text link
    We study some simple models of disease transmission on small-world networks, in which either the probability of infection by a disease or the probability of its transmission is varied, or both. The resulting models display epidemic behavior when the infection or transmission probability rises above the threshold for site or bond percolation on the network, and we give exact solutions for the position of this threshold in a variety of cases. We confirm our analytic results by numerical simulation.Comment: 6 pages, including 3 postscript figure

    A Hebbian approach to complex network generation

    Full text link
    Through a redefinition of patterns in an Hopfield-like model, we introduce and develop an approach to model discrete systems made up of many, interacting components with inner degrees of freedom. Our approach clarifies the intrinsic connection between the kind of interactions among components and the emergent topology describing the system itself; also, it allows to effectively address the statistical mechanics on the resulting networks. Indeed, a wide class of analytically treatable, weighted random graphs with a tunable level of correlation can be recovered and controlled. We especially focus on the case of imitative couplings among components endowed with similar patterns (i.e. attributes), which, as we show, naturally and without any a-priori assumption, gives rise to small-world effects. We also solve the thermodynamics (at a replica symmetric level) by extending the double stochastic stability technique: free energy, self consistency relations and fluctuation analysis for a picture of criticality are obtained

    Phase transitions in social sciences: two-populations mean field theory

    Get PDF
    A new mean field statistical mechanics model of two interacting groups of spins is introduced and the phase transition studied in terms of their relative size. A jump of the average magnetization is found for large values of the mutual interaction when the relative percentage of the two populations crosses a critical threshold. It is shown how the critical percentage depends on internal interactions and on the initial magnetizations. The model is interpreted as a prototype of resident-immigrant cultural interaction and conclusions from the social sciences perspectives are drawn

    Random spread on the family of small-world networks

    Get PDF
    We present the analytical and numerical results of a random walk on the family of small-world graphs. The average access time shows a crossover from the regular to random behavior with increasing distance from the starting point of the random walk. We introduce an {\em independent step approximation}, which enables us to obtain analytic results for the average access time. We observe a scaling relation for the average access time in the degree of the nodes. The behavior of average access time as a function of pp, shows striking similarity with that of the {\em characteristic length} of the graph. This observation may have important applications in routing and switching in networks with large number of nodes.Comment: RevTeX4 file with 6 figure

    Exact results and scaling properties of small-world networks

    Full text link
    We study the distribution function for minimal paths in small-world networks. Using properties of this distribution function, we derive analytic results which greatly simplify the numerical calculation of the average minimal distance, ℓˉ\bar{\ell}, and its variance, σ2\sigma^2. We also discuss the scaling properties of the distribution function. Finally, we study the limit of large system sizes and obtain some analytic results.Comment: RevTeX, 4 pages, 5 figures included. Minor corrections and addition
    • 

    corecore