486 research outputs found

    Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon

    Full text link
    This paper deals with the dead-water phenomenon, which occurs when a ship sails in a stratified fluid, and experiences an important drag due to waves below the surface. More generally, we study the generation of internal waves by a disturbance moving at constant speed on top of two layers of fluids of different densities. Starting from the full Euler equations, we present several nonlinear asymptotic models, in the long wave regime. These models are rigorously justified by consistency or convergence results. A careful theoretical and numerical analysis is then provided, in order to predict the behavior of the flow and in which situations the dead-water effect appears.Comment: To appear in Nonlinearit

    Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion

    Full text link
    Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d2d\geq 2 and in all of space for d3d\geq 3, the uniqueness being a result previously not known for PKS with degenerate diffusion. We generalize the notion of criticality for PKS and show that subcritical problems are globally well-posed. For a fairly general class of problems, we prove the existence of a critical mass which sharply divides the possibility of finite time blow up and global existence. Moreover, we compute the critical mass for fully general problems and show that solutions with smaller mass exists globally. For a class of supercritical problems we prove finite time blow up is possible for initial data of arbitrary mass.Comment: 31 page

    Effective supergravity descriptions of superstring cosmology

    Full text link
    This text is a review of aspects of supergravity theories that are relevant in superstring cosmology. In particular, it considers the possibilities and restrictions for `uplifting terms', i.e. methods to produce de Sitter vacua. We concentrate on N=1 and N=2 supergravities, and the tools of superconformal methods, which clarify the structure of these theories. Cosmic strings and embeddings of target manifolds of supergravity theories in others are discussed in short at the end.Comment: 12 pages, contribution to the proceedings of the 2nd international conference on Quantum Theories and Renormalization Group in Gravity and Cosmology, Barcelona, July 11-15, 2006, Journal of Physics

    N=2 supergravity in five dimensions revisited

    Get PDF
    We construct matter-coupled N=2 supergravity in five dimensions, using the superconformal approach. For the matter sector we take an arbitrary number of vector-, tensor- and hyper-multiplets. By allowing off-diagonal vector-tensor couplings we find more general results than currently known in the literature. Our results provide the appropriate starting point for a systematic search for BPS solutions, and for applications of M-theory compactifications on Calabi-Yau manifolds with fluxes.Comment: 35 pages; v.2: A sign changed in a bilinear fermion term in (5.7

    Effect of gas phase on SiC and Si 3 N 4 formations from SiO 2

    Full text link
    During the synthesis of SiC, Si 3 N 4 and sialon whiskers by carbothermal reduction of SiO 2 , a localized formation of amorphous phases or Si 2 N 2 O powders was observed beneath these whiskers. Because these whiskers were formed by the vapour/solid mechanism, the controlling gas phase was of primary importance to obtain whiskers of tailored morphology and chemistry. To elucidate the effect of the gas phase composition on the reaction mechanisms of SiC and Si 3 N 4 , the oxygen partial pressure was measured during the synthesis with a ZrO 2 solid electrolyte. The carbothermal reduction of SiO 2 , as well as evolution of gases, were accelerated by a formation of a molten fluorosilicate with an auxiliary halide bath. The oxygen partial pressure steadily increased with increasing temperature and reached a maximum level of 10 −11 10 −12 atm in the early stage of reaction at 1623 K, then decreased again towards the end of reaction in both cases. Effects of the gas phase on the SiC and Si 3 N 4 formations were not the same: p CO and and their ratio were important factors in the SiC formation, while the higher formed an oxynitride phase in the Si 3 N 4 formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44719/1/10853_2004_Article_BF00542914.pd

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of β\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat)  0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of β\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed β\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the ηϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
    corecore