11 research outputs found

    Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans

    Full text link

    Efficacy and acceptability of noninvasive brain stimulation interventions for weight reduction in obesity: a pilot network meta-analysis

    No full text
    Background/Objectives: Obesity has recently been recognized as a neurocognitive disorder involving circuits associated with the reward system and the dorsolateral prefrontal cortex (DLPFC). Noninvasive brain stimulation (NIBS) has been proposed as a strategy for the management of obesity. However, the results have been inconclusive. The aim of the current network meta-analysis (NMA) was to evaluate the efficacy and acceptability of different NIBS modalities for weight reduction in participants with obesity. Methods: Randomized controlled trials (RCTs) examining NIBS interventions in patients with obesity were analyzed using the frequentist model of NMA. The coprimary outcome was change in body mass index (BMI) and acceptability, which was calculated using the dropout rate. Results: Overall, the current NMA, consisting of eight RCTs, revealed that the high-frequency repetitive transcranial magnetic stimulation (TMS) over the left DLPFC was ranked to be associated with the second-largest decrease in BMI and the largest decrease in total energy intake and craving severity, whereas the high-frequency deep TMS over bilateral DLPFC and the insula was ranked to be associated with the largest decrease in BMI. Conclusion: This pilot study provided a “signal” for the design of more methodologically robust and larger RCTs based on the findings of the potentially beneficial effect on weight reduction in participants with obesity by different NIBS interventions

    Extracellular matrix of the central nervous system: from neglect to challenge

    Get PDF
    The basic concept, that specialized extracellular matrices rich in hyaluronan, chondroitin sulfate proteoglycans (aggrecan, versican, neurocan, brevican, phosphacan), link proteins and tenascins (Tn-R, Tn-C) can regulate cellular migration and axonal growth and thus, actively participate in the development and maturation of the nervous system, has in recent years gained rapidly expanding experimental support. The swift assembly and remodeling of these matrices have been associated with axonal guidance functions in the periphery and with the structural stabilization of myelinated fiber tracts and synaptic contacts in the maturating central nervous system. Particular interest has been focused on the putative role of chondroitin sulfate proteoglycans in suppressing central nervous system regeneration after lesions. The axon growth inhibitory properties of several of these chondroitin sulfate proteoglycans in vitro, and the partial recovery of structural plasticity in lesioned animals treated with chondroitin sulfate degrading enzymes in vivo have significantly contributed to the increased awareness of this long time neglected structure

    Extracellular matrix proteomics in schizophrenia and Alzheimer’s disease

    No full text
    corecore