6 research outputs found

    Earth-as-an-exoplanet: comparing earthshine observations to models of an exo-Earth

    Get PDF
    Traditional methods of exoplanet characterization that only make use of emitted or reflected flux lack the ability to fully distinguish between different physical features of the target, such as cloud layers, hazes, or surface features. Polarimetry, however, is a powerful, more sensitive technique that has this ability, as it measures light as a vector (by the orientation of the electric field) rather than a scalar intensity. It is therefore extremely sensitive to the composition and structure of the planetary atmosphere and surface, being affected by properties such as the mixing ratios of atmospheric absorbing gases, cloud optical thickness, cloud top pressure, cloud particle size, and surface albedo. Various groups have theoretically studied the optical linear polarimetric signals of Earth-like exoplanets as functions of both orbital phase and wavelength. With this project we assess the accuracy of these theoretical models against observations of the Earthshine, the only known observations of an Earth-like planet thus far. Using data of the atmosphere and surface taken by the MODIS instrument aboard the Terra and Aqua satellites, as well as surface reflectance spectra from the JPL EcoStress Spectral Library, we created a gridded model of the Earth. Then, using this model data as input for three separate radiative transfer algorithms, we generate the flux and linear polarization spectra for the model exoplanet-Earth across the optical to near-infrared wavelengths. We compare the results from all three codes to each other and to the observational linear spectropolarimetric data of the Earthshine obtained by a member of our group. We identify similarities and potential pitfalls between the codes, and make necessary adjustments to them, in an effort to improve our future characterizations of terrestrial exoplanets.Stars and planetary system

    Comparing models of an exoplanet-earth to earthshine observations

    Get PDF
    Polarimetry is widely becoming recognized as a powerful technique for enhancing the contrast between a star and an exoplanet, and thus improving upon the direct detection of exoplanets. The real power of polarimetry, however, is in its ability to characterize the physical properties of these worlds. This is because the state of the polarization of the light from the planet is very sensitive to the composition and structure of the planetary atmosphere and surface, being affected by properties such as the mixing ratios of atmospheric absorbing gases, cloud optical thickness, cloud top pressure, cloud particle size, and surface albedo. Various groups have theoretically studied the optical linear polarimetric signals of Earth-like exoplanets as functions of both orbital phase and wavelength. This project aims to validate the accuracy of these theoretical models against the only known observations of an Earth-like planet thus far: Earthshine. Using atmospheric and surface data taken by the MODIS instrument aboard the Terra and Aqua satellites, as well as surface albedo spectra from the EcoStress Spectral Library, we created a detailed model of the Earth. Then, using this model data as input for three separate radiative transfer algorithms, we generate the flux and linear polarization spectra for the model exoplanet-Earth from the optical to near-infrared wavelengths. We compare the results from all three codes to each other and to observational linear spectropolarimetric data of the Earthshine obtained by a member of our group. We identify similarities and potential pitfalls between these codes in an effort to improve our future characterizations of Earth-like exoplanets.Stars and planetary system

    Polarized signatures of a habitable world: comparing models of an exoplanet-earth with VNIR earthshine spectra

    No full text
    n the James Webb Space Telescope and Extremely Large Telescopes era we expect to characterize a number of potentially habitable Earth-like exoplanets. However, the characterization of these worlds depends crucially on the accuracy of theoretical models. Validating these models against observations of planets with known properties will be key for the future characterization of terrestrial exoplanets. Due to its sensitivity to the micro- and macro-physical properties of an atmosphere, spectropolarimetry will be an important tool that in tandem with traditional flux-only observations will enhance the capabilities of characterizing Earth-like planets. In this presentation we benchmark two separate polarization-enabled radiative transfer codes against each other and against unique linear spectropolarimetric observations of the Earthshine (i.e., sunlight scattered by the dayside of the Earth and reflected back to the planet by the nightside of the Moon) that cover wavelengths from ~ 0.4 μm to ~ 2.3 μm. We find that the results from the two codes agree with each other but both underestimate the level of polarization of the Earthshine. We discuss how we plan to update the two codes to better fit the observations. We also report an interesting discrepancy between our models and the observed 1.27 μm O2 feature in the Earthshine, together with an analysis of potential methods for matching this feature and a discussion on the implications this has for future observations of habitable exoplanets.Stars and planetary system

    Weather on Other Worlds. V. The Three Most Rapidly Rotating Ultra-cool Dwarfs

    No full text
    We present the discovery of rapid photometric variability in three ultra-cool dwarfs from long-duration monitoring with the Spitzer Space Telescope. The T7, L3.5, and L8 dwarfs have the shortest photometric periods known to date: 1.080-0.005+0.004 hr, 1.14-0.01+0.03 hr, and 1.23-0.01+0.01 hr, respectively. We confirm the rapid rotation through moderate-resolution infrared spectroscopy, which reveals projected rotational velocities between 79 and 104 km s-1. We compare the near-infrared spectra to photospheric models to determine the objects' fundamental parameters and radial velocities. We find that the equatorial rotational velocities for all three objects are ⪆100 km s-1. The three L and T dwarfs reported here are the most rapidly spinning and likely the most oblate field ultra-cool dwarfs known to date. Correspondingly, all three are excellent candidates for seeking auroral radio emission and net optical/infrared polarization. As of this writing, 78 L-, T-, and Y-dwarf rotation periods have now been measured. The clustering of the shortest rotation periods near 1 hr suggests that brown dwarfs are unlikely to spin much faster. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore