34 research outputs found

    No Differences in Soil Carbon Stocks Across the Tree Line in the Peruvian Andes

    Get PDF
    ABSTRACT Reliable soil organic carbon (SOC) stock measurements of all major ecosystems are essential for predicting the influence of global warming on global soil carbon pools, but hardly any detailed soil survey data are available for tropical montane cloud forests (TMCF) and adjacent high elevation grasslands above (puna). TMCF are among the most threatened of ecosystems under current predicted global warming scenarios. We conducted an intensive soil sampling campaign extending 40 km along the tree line in the Peruvian Andes between 2994 and 3860 m asl to quantify SOC stocks of TMCF, puna grassland, and shrubland sites in the transition zone between the two habitats. SOC stocks from the soil surface down to the bedrock averaged (±standard error SE) 11.8 (±1.5, N = 24) kg C/m 2 in TMCF, 14.7 (±1.4, N = 9) kg C/m 2 in the shrublands and 11.9 (±0.8, N = 35) kg C/m 2 in the grasslands and were not significantly different (P > 0.05 for all comparisons). However, soil profile analysis revealed distinct differences, with TMCF profiles showing a uniform SOC distribution with depth, shrublands a linear decrease, and puna sites an exponential decrease in SOC densities with soil depth. Organic soil layer thickness reached a maximum ($70 cm) at the upper limit of the TMCF and declined with increasing altitude toward puna sites. Within TMCF, no significant increase in SOC stocks with increasing altitude was observed, probably because of the large variations among SOC stocks at different sites, which in turn were correlated with spatial variation in soil depth

    Ecosystem Carbon Storage Across the Grassland-Forest Transition in the High Andes of Manu National Park, Peru

    No full text
    Improved management of carbon storage by terrestrial biomes has significant value for mitigating climate change. The carbon value of such management has the potential to provide additional income to rural communities and provide biodiversity and climate adaptation co-benefits. Here, we quantify the carbon stores in a 49,300-ha landscape centered on the cloud forest-grassland transition of the high Andes in Manu National Park, Peru. Aboveground carbon densities were measured across the landscape by field sampling of 70 sites above and below the treeline. The forest near the treeline contained 63.4 ± 5.2 Mg C ha-1 aboveground, with an additional 13.9 ± 2.8 Mg C ha-1 estimated to be stored in the coarse roots, using a root to shoot ratio of 0.26. Puna grasslands near the treeline were found to store 7.5 ± 0.7 Mg C ha-1 in aboveground biomass. Comparing our result to soil data gathered by Zimmermann and others (Ecosystems 13:62-74, 2010), we found the ratio of belowground:aboveground carbon decreased from 15.8 on the puna to 8.6 in the transition zone and 2.1 in the forest. No significant relationships were found between carbon densities and slope, altitude or fire disturbance history, though grazing (for puna) was found to reduce aboveground carbon densities significantly. We scaled our study sites to the study region with remote sensing observations from Landsat. The carbon sequestration potential of improved grazing management and assisted upslope treeline migration was also estimated. Afforestation of puna at the treeline could generate revenues of US $1,374 per ha over the project lifetime via commercialization of the carbon credits from gains in aboveground carbon stocks. Uncertainties in the fate of the large soil carbon stocks under an afforestation scenario exist

    Upslope migration of Andean trees

    No full text
    Aim Climate change causes shifts in species distributions, or 'migrations'. Despite the centrality of species distributions to biodiversity conservation, the demonstrated large migration of tropical plant species in response to climate change in the past, and the expected sensitivity of species distributions to modern climate change, no study has tested for modern species migrations in tropical plants. Here we conduct a first test of the hypothesis that increasing temperatures are causing tropical trees to migrate to cooler areas. Location Tropical Andes biodiversity hotspot, south-eastern Peru, South America. Methods We use data from repeated (2003/04-2007/08) censuses of 14 1-ha forest inventory plots spanning an elevational gradient from 950 to 3400m in Manu National Park in south-eastern Peru, to characterize changes in the elevational distributions of 38 Andean tree genera. We also analyse changes in the genus-level composition of the inventory plots through time. Results We show that most tropical Andean tree genera shifted their mean distributions upslope over the study period and that the mean rate of migration is approximately 2.5-3.5 vertical metres upslope per year. Consistent with upward migrations we also find increasing abundances of tree genera previously distributed at lower elevations in the majority of study plots. Main conclusions These findings are in accord with the a priori hypothesis of upward shifts in species ranges due to elevated temperatures, and are potentially the first documented evidence of present-day climate-driven migrations in a tropical plant community. The observed mean rate of change is less than predicted from the temperature increases for the region, possibly due to the influence of changes in moisture or non-climatic factors such as substrate, species interactions, lags in tree community response and/or dispersal limitations. Whatever the cause(s), continued slower-than-expected migration of tropical Andean trees would indicate a limited ability to respond to increased temperatures, which may lead to increased extinction risks with further climate change

    No differences in soil carbon stocks across the tree line in the Peruvian Andes

    No full text
    Reliable soil organic carbon (SOC) stock measurements of all major ecosystems are essential for predicting the influence of global warming on global soil carbon pools, but hardly any detailed soil survey data are available for tropical montane cloud forests (TMCF) and adjacent high elevation grasslands above (puna). TMCF are among the most threatened of ecosystems under current predicted global warming scenarios. We conducted an intensive soil sampling campaign extending 40 km along the tree line in the Peruvian Andes between 2994 and 3860 m asl to quantify SOC stocks of TMCF, puna grassland, and shrubland sites in the transition zone between the two habitats. SOC stocks from the soil surface down to the bedrock averaged (±standard error SE) 11. 8 (±1.5, N = 24) kg C/m2 in TMCF, 14.7 (±1.4, N = 9) kg C/m2 in the shrublands and 11.9 (±0.8, N = 35) kg C/m2 in the grasslands and were not significantly different (P > 0.05 for all comparisons). However, soil profile analysis revealed distinct differences, with TMCF profiles showing a uniform SOC distribution with depth, shrublands a linear decrease, and puna sites an exponential decrease in SOC densities with soil depth. Organic soil layer thickness reached a maximum (~70 cm) at the upper limit of the TMCF and declined with increasing altitude toward puna sites. Within TMCF, no significant increase in SOC stocks with increasing altitude was observed, probably because of the large variations among SOC stocks at different sites, which in turn were correlated with spatial variation in soil depth
    corecore