19,771 research outputs found

    Thermal power systems small power systems applications project. Decision analysis for evaluating and ranking small solar thermal power system technologies. Volume 1: A brief introduction to multiattribute decision analysis

    Get PDF
    The principal concepts of the Keeney and Raiffa approach to multiattribute decision analysis are described. Topics discussed include the concepts of decision alternatives, outcomes, objectives, attributes and their states, attribute utility functions, and the necessary independence properties for the attribute states to be aggregated into a numerical representation of the preferences of the decision maker for the outcomes and decision alternatives

    The IFS Green Budget: January 2007

    Get PDF

    Evaluation of non-intrusive flow measurement techniques for a re-entry flight experiment

    Get PDF
    This study evaluates various non-intrusive techniques for the measurement of the flow field on the windward side of the Space Shuttle orbiter or a similar reentry vehicle. Included are linear (Rayleigh, Raman, Mie, Laser Doppler Velocimetry, Resonant Doppler Velocimetry) and nonlinear (Coherent Anti-Stokes Raman, Laser-Induced Fluorescence) light scattering, electron-beam fluorescence, thermal emission, and mass spectroscopy. Flow-field properties were taken from a nonequilibrium flow model by Shinn, Moss, and Simmonds at the NASA Langley Research Center. Conclusions are, when possible, based on quantitative scaling of known laboratory results to the conditions projected. Detailed discussion with researchers in the field contributed further to these conclusions and provided valuable insights regarding the experimental feasibility of each of the techniques

    Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine

    Full text link
    Aims: We aim to extend our current observational understanding of the integrated planet Earth spectropolarimetry from the optical to the near-infrared wavelengths. Major biomarkers like O2_{\rm 2} and water vapor are strong flux absorbents in the Earth atmosphere and some linear polarization of the reflected stellar light is expected to occur at these wavelengths. Methods: Simultaneous optical (0.4−0.90.4-0.9 μ\mum) and near-infrared (0.9−2.30.9-2.3 μ\mum) linear spectropolarimetric data of the earthshine were acquired by observing the nightside of the waxing Moon. The data have sufficient spectral resolution (2.51 nm in the optical, and 1.83 and 2.91 nm in the near-infrared) to resolve major molecular species present in the Earth atmosphere. Results: We find the highest values of linear polarization (≥10%\ge 10\%) at the bluest wavelengths, which agrees with the literature. Linear polarization intensity steadily decreases towards red wavelengths reaching a nearly flat value beyond ∼\sim0.8 μ\mum. In the near-infrared, we measured a polarization degree of ∼4.5%\sim4.5 \% for the continuum. We report the detection of molecular features due to O2_{2} at 0.760,1.25μ0.760, 1.25 \mum and H2_{2}O at 0.653−-0.725 μ\mum, 0.780−-0.825 μ\mum, 0.93 and 1.12 μ\mum in the spectropolarimetric data; most of them show high linear polarimetry degrees above the continuum. In particular, the broad H2_{2}O 1.12 μ\mum band displays a polarimetric intensity as high as that of the blue optical. These features may become a powerful tool to characterize Earth-like planets in polarized light.Comment: 4 pages, 3 figures. Accepted for publication as Letter in Astronomy and Astrophysics on 23/01/201

    Rotational modulation of the linear polarimetric variability of the cool dwarf TVLM 513−-46546

    Full text link
    Aims: We aimed to monitor the optical linear polarimetric signal of the magnetized, rapidly rotating M8.5 dwarf TVLM 513−-46546. Methods: RR- and II-band linear polarimetry images were collected with the ALFOSC instrument of the 2.56-m Nordic Optical Telescope on two consecutive nights covering about 0.5 and 4 rotation cycles in the RR and II filters, respectively. We also obtained simultaneous intensity curves by means of differential photometry. The typical precision of the data is ±\pm0.46\% (RR), ±\pm0.35\% (II) in the linear polarization degree and ±\pm9 mmag (RR), ±\pm1.6 mmag (II) in the differential intensity curves. Results: Strong and variable linear polarization is detected in the RR and II filters, with values of maximum polarization (p∗p^{*} = 1.30±\pm0.35 \%) similar for both bands. The intensity and the polarimetric curves present a sinusoid-like pattern with a periodicity of ∼\sim1.98 h, which we ascribe to structures in TVLM 513−-46's surface synchronized with rotation. We found that the peaks of the intensity and polarimetric curves occur with a phase difference of 0.18±\pm0.01, and that the maximum of the linear polarization happens nearly half a period (0.59±\pm0.03) after the radio pulse. We discussed different scenarios to account for the observed properties of the light curves.Comment: Accepted for publication in Astronomy and Astrophysic

    Analytical fuel property effects--small combustors

    Get PDF
    The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions

    Spaceborne power systems preference analyses. Volume 2: Decision analysis

    Get PDF
    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis. The purpose of the ranking was to identify promising concepts for further technology development and the issues associated with such development. Four groups were interviewed to obtain preference. The four groups were: safety, systems definition and design, technology assessment, and mission analysis. The highest ranked systems were the heat-pipe thermoelectric systems, heat-pipe Stirling, in-core thermionic, and liquid-metal thermoelectric systems. The next group contained the liquid-metal Stirling, heat-pipe Alkali Metal Thermoelectric Converter (AMTEC), heat-pipe Brayton, liquid-metal out-of-core thermionic, and heat-pipe Rankine systems. The least preferred systems were the liquid-metal AMTEC, heat-pipe thermophotovoltaic, liquid-metal Brayton and Rankine, and gas-cooled Brayton. The three nonheat-pipe technologies selected matched the top three nonheat-pipe systems ranked by this study

    Spaceborne power systems preference analyses. Volume 1: Summary

    Get PDF
    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis to identify promising concepts for further technology development. Four groups interviewed were: safety, systems definition and design, technology assessment, and mission analysis. The ranking results were consistent from group and for different utility function models for individuals

    A study of the thermoregulatory characteristics of a liquid-cooled garment with automatic temperature control based on sweat rate: Experimental investigation and biothermal man-model development

    Get PDF
    Experimental results for three subjects walking on a treadmill at exercise rates of up to 590 watts showed that thermal comfort could be maintained in a liquid cooled garment by using an automatic temperature controller based on sweat rate. The addition of head- and neck-cooling to an Apollo type liquid cooled garment increased its effectiveness and resulted in greater subjective comfort. The biothermal model of man developed in the second portion of the study utilized heat rates and exchange coefficients based on the experimental data, and included the cooling provisions of a liquid-cooled garment with automatic temperature control based on sweat rate. Simulation results were good approximations of the experimental results
    • …
    corecore