347 research outputs found

    Modeling on Body Delay Tolerant Network Sink Locality of Wireless Body Area Networks for Different Body Postures

    Get PDF
    Due to the recent advancements in the field of wireless communication and Wireless Sensor Networks, the Wireless Body Area Networks (WBANs) have become an area of concern for researchers. In military operations, patient monitoring, sports field, among other wireless body area networks is used for real time monitoring and smart sensing for eHealth operations. In these WBAN, disconnections between the body sensors occur quite often and sometimes of significant duration due to the postural mobility nature of the human. These consequently affects the efficiency of the entire network hence the need for Delay Tolerant Network (DTN). The DTN minimizes delays and adapts itself to cope with long delays if they occur. One of the vital mechanisms that can be employed to enhance the efficiency of the network is to determine the optimal postural locality of the sink nod

    Modeling on Body Delay Tolerant Network Sink Locality of Wireless Body Area Networks for Different Body Postures

    Get PDF
    Due to the recent advancements in the field of wireless communication and Wireless Sensor Networks, the Wireless Body Area Networks (WBANs) have become an area of concern for researchers. In military operations, patient monitoring, sports field, among other wireless body area networks is used for real time monitoring and smart sensing for eHealth operations. In these WBAN, disconnections between the body sensors occur quite often and sometimes of significant duration due to the postural mobility nature of the human. These consequently affects the efficiency of the entire network hence the need for Delay Tolerant Network (DTN). The DTN minimizes delays and adapts itself to cope with long delays if they occur. One of the vital mechanisms that can be employed to enhance the efficiency of the network is to determine the optimal postural locality of the sink nod

    The impossibility of Landauer's bound for almost every quantum state

    Full text link
    The thermodynamic cost of resetting an arbitrary initial state to a particular desired state is lower bounded by Landauer's bound. However, here we demonstrate that this lower bound is necessarily unachievable for nearly every initial state, for any reliable reset mechanism. Since local heating threatens rapid decoherence, this issue is of substantial importance beyond mere energy efficiency. For the case of qubit reset, we find the minimally dissipative state analytically for any reliable reset protocol, in terms of the entropy-flow vector introduced here. This allows us to verify a recent theorem about initial-state dependence of entropy production for any finite-time transformation, as it pertains to quantum state preparation.Comment: 9 pages plus 3 pages of appendices, 3 figure

    Building Gaussian Cluster States by Linear Optics

    Get PDF
    The linear optical creation of Gaussian cluster states, a potential resource for universal quantum computation, is investigated. We show that for any Gaussian cluster state, the canonical generation scheme in terms of QND-type interactions, can be entirely replaced by off-line squeezers and beam splitters. Moreover, we find that, in terms of squeezing resources, the canonical states are rather wasteful and we propose a systematic way to create cheaper states. As an application, we consider Gaussian cluster computation in multiple-rail encoding. This encoding may reduce errors due to finite squeezing, even when the extra rails are achieved through off-line squeezing and linear optics.Comment: 5 Pages, 3 figure

    Initial-State Dependence of Thermodynamic Dissipation for any Quantum Process

    Full text link
    New exact results about the nonequilibrium thermodynamics of open quantum systems at arbitrary timescales are obtained by considering all possible variations of initial conditions of a system, its environment, and correlations between them. First we obtain a new quantum-information theoretic equality for entropy production, valid for an arbitrary initial joint state of system and environment. For any finite-time process with a fixed initial environment, we then show that the contraction of the system's distinction -- relative to the minimally dissipative state -- exactly quantifies its thermodynamic dissipation. The quantum component of this dissipation is the change in coherence relative to the minimally dissipative state. Implications for quantum state preparation and local control are explored. For nonunitary processes -- like the preparation of any particular quantum state -- we find that mismatched expectations lead to divergent dissipation as the actual initial state becomes orthogonal to the anticipated one.Comment: 6 pages plus 14 pages of appendices, 1 figur

    Overarching framework between Gaussian quantum discord and Gaussian quantum illumination

    Full text link
    We cast the problem of illuminating an object in a noisy environment into a communication protocol. A probe is sent into the environment, and the presence or absence of the object constitutes a signal encoded on the probe. The probe is then measured to decode the signal. We calculate the Holevo information and bounds to the accessible information between the encoded and received signal with two different Gaussian probes---an Einstein-Podolsky-Rosen (EPR) state and a coherent state. We also evaluate the Gaussian discord consumed during the encoding process with the EPR probe. We find that the Holevo quantum advantage, defined as the difference between the Holevo information obtained from the EPR and coherent state probes, is approximately equal to the discord consumed. These quantities become exact in the typical illumination regime of low object reflectivity and low probe energy. Hence we show that discord is the resource responsible for the quantum advantage in Gaussian quantum illumination.Comment: 12 pages, 8 figure

    Entangled-state cycles from conditional quantum evolution

    Get PDF
    A system of cascaded qubits interacting via the oneway exchange of photons is studied. While for general operating conditions the system evolves to a superposition of Bell states (a dark state) in the long-time limit, under a particular resonance condition no steady state is reached within a finite time. We analyze the conditional quantum evolution (quantum trajectories) to characterize the asymptotic behavior under this resonance condition. A distinct bimodality is observed: for perfect qubit coupling, the system either evolves to a maximally entangled Bell state without emitting photons (the dark state), or executes a sustained entangled-state cycle - random switching between a pair of Bell states while emitting a continuous photon stream; for imperfect coupling, two entangled-state cycles coexist, between which a random selection is made from one quantum trajectory to another.Comment: 12 pages, 10 figure

    The use of GNSS zenith total delays in operational AROME/Hungary 3D-Var over a central European domain

    Get PDF
    The delay of satellite signals broadcasted by Global Navigation Satellite System (GNSS) provides unique atmospheric observations which endorse numerical weather prediction from global to limited-area models. Due to the possibility of its frequent and near-real-time estimation, the zenith total delays (ZTDs) are valuable information for any state-of-the-art data assimilation system. This article introduces the data assimilation of ZTDs in a Hungarian numerical weather prediction system, which was carried out by taking into account observations from central European GNSS analysis and processing centres. The importance of ZTD observations is described and shown by a diagnostic tool in the 3-hourly updated 3D-Var assimilation scheme. Furthermore, observing system experiments are done to evaluate the impact of GNSS ZTDs on mesoscale limited-area forecasts. The results of the use of GNSS ZTDs showed a clear added value to improve screen-level temperature and humidity forecasts when the bias is accurately estimated and corrected in the data assimilation scheme. The importance of variational, i.e. adaptive bias correction, is highlighted by verification scores compared to static bias correction. Moreover, this paper reviews the quality control of GNSS ground-based stations inside the central European domain, the calculation of optimal thinning distance and the preparation of the two above-mentioned bias correction methods. Finally, conclusions are drawn on different settings of the forecast and analysis experiments with a brief future outlook.</p
    corecore