24 research outputs found

    Geology and palaeontology of the Hindon Maar Complex: A Miocene terrestrial fossil Lagerstätte in southern New Zealand

    Get PDF
    Highlights • Hindon Maar Complex is a new mid-Miocene Fossil-Lagerstätte in New Zealand. • Anoxia in maar lakes allowed exquisite preservation of plant and animal fossils. • The biota is from a lake and Nothofagus/podocarp/mixed broadleaf forest ecosystem. • Fossils record high diversity at humid, warm Southern Hemisphere mid-latitudes. Abstract This paper highlights the geology, biodiversity and palaeoecology of the Hindon Maar Complex, the second Miocene Konservat-Lagerstätte to be described from New Zealand. The Lagerstätte comprises four partly eroded maar-diatreme volcanoes, with three craters filled by biogenic and highly fossiliferous lacustrine sediments. The exceptionally well-preserved and diverse biota from the site is derived from a mid-latitude Southern Hemisphere lake-forest palaeoecosystem, including many fossil taxa not previously reported from the Southern Hemisphere. The most common macrofossils are leaves of Nothofagus, but the flora also includes conifers, cycads, monocots (such as Ripogonum and palms), together with Lauraceae, Myrtaceae and Araliaceae leaves and flowers. The small maar lakes were surrounded by Nothofagus/podocarp/mixed broadleaf forest growing under humid, warm temperate to subtropical conditions. The fossil fauna comprises insects in the orders Odonata, Hemiptera, Thysanoptera, Coleoptera, Diptera, Hymenoptera and Trichoptera, and the fish assemblage includes a non-migratory species of the Southern Hemisphere Galaxias (Galaxiidae) and a significant new record of the freshwater eel Anguilla (Anguillidae). The fossil assemblage also includes the first pre-Quaternary bird feathers from New Zealand and abundant coprolites derived from fish and volant birds, presumably waterfowl. Palynomorph analysis and a 40Ar/39Ar age of 14.6 Ma obtained from basanite associated with the maar complex indicate that the Hindon Maar Complex is of mid-Miocene age (Langhian; New Zealand local stage: Lillburnian). It thus provides a new and unique perspective on Neogene terrestrial biodiversity and biogeography in the Australasian region, around the end of the mid-Miocene thermal optimum and prior to late Miocene–Pleistocene climate cooling episodes when many warm-temperate and subtropical forest components became extinct in New Zealand

    Miocene Fossils Reveal Ancient Roots for New Zealand’s Endemic Mystacina (Chiroptera) and Its Rainforest Habitat

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19–16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina

    A stratified random survey of the proportion of poor quality oral artesunate sold at medicine outlets in the Lao PDR – implications for therapeutic failure and drug resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Counterfeit oral artesunate has been a major public health problem in mainland SE Asia, impeding malaria control. A countrywide stratified random survey was performed to determine the availability and quality of oral artesunate in pharmacies and outlets (shops selling medicines) in the Lao PDR (Laos).</p> <p>Methods</p> <p>In 2003, 'mystery' shoppers were asked to buy artesunate tablets from 180 outlets in 12 of the 18 Lao provinces. Outlets were selected using stratified random sampling by investigators not involved in sampling. Samples were analysed for packaging characteristics, by the Fast Red Dye test, high-performance liquid chromatography (HPLC), mass spectrometry (MS), X-ray diffractometry and pollen analysis.</p> <p>Results</p> <p>Of 180 outlets sampled, 25 (13.9%) sold oral artesunate. Outlets selling artesunate were more commonly found in the more malarious southern Laos. Of the 25 outlets, 22 (88%; 95%CI 68–97%) sold counterfeit artesunate, as defined by packaging and chemistry. No artesunate was detected in the counterfeits by any of the chemical analysis techniques and analysis of the packaging demonstrated seven different counterfeit types. There was complete agreement between the Fast Red dye test, HPLC and MS analysis. A wide variety of wrong active ingredients were found by MS. Of great concern, 4/27 (14.8%) fakes contained detectable amounts of artemisinin (0.26–115.7 mg/tablet).</p> <p>Conclusion</p> <p>This random survey confirms results from previous convenience surveys that counterfeit artesunate is a severe public health problem. The presence of artemisinin in counterfeits may encourage malaria resistance to artemisinin derivatives. With increasing accessibility of artemisinin-derivative combination therapy (ACT) in Laos, the removal of artesunate monotherapy from pharmacies may be an effective intervention.</p

    Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Get PDF
    BACKGROUND: Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT) at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. METHODS: Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis) and botanical investigations were performed. RESULTS: Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA) containing paracetamol (acetaminophen), counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. CONCLUSIONS: Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems

    Poor quality drugs: grand challenges in high throughput detection, countrywide sampling, and forensics in developing countries.

    Get PDF
    Throughout history, poor quality medicines have been a persistent problem, with periodical crises in the supply of antimicrobials, such as fake cinchona bark in the 1600s and fake quinine in the 1800s. Regrettably, this problem seems to have grown in the last decade, especially afflicting unsuspecting patients and those seeking medicines via on-line pharmacies. Here we discuss some of the challenges related to the fight against poor quality drugs, and counterfeits in particular, with an emphasis on the analytical tools available, their relative performance, and the necessary workflows needed for distinguishing between genuine, substandard, degraded and counterfeit medicines

    Miocene fossils reveal ancient roots for New Zealand's endemic Mystacina (Chiroptera) and its rainforest habitat

    No full text
    The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19-16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina
    corecore